

Journal of Pure and Applied Algebra 109 (1996) 97-106

JOURNAL OF PURE AND APPLIED ALGEBRA

Dihedral homology of commutative algebras

Andrea Solotar^{a, b}, Micheline Vigué-Poirrier^{b,*}

^aDto de Matematica, Fac. de Cs. Exactas, Univ. de Buenos Aires, Argentina and CONICET, Argentina ^bDepartment of Mathematics, Institut Galilée, Université de Paris XIII, 93430 Villetaneuse, France

Communicated by C.A. Weibel; received 13 July 1994; revised 13 February 1995

Abstract

Let A be an associative k-algebra with involution, where k is a commutative ring of characteristic not equal to two. Then the dihedral groups act on the Hochschild complex and, following Loday, a new homological theory, called dihedral homology, can be defined generalizing the notion of cyclic homology defined by Connes. Here we give a model to compute dihedral homology of a commutative algebra over a characteristic zero field. As, for an involutive algebra, we have a decomposition of Hochschild homology into a direct sum of two k-modules: \mathbb{Z}_2 -equivariant and skew \mathbb{Z}_2 -equivariant Hochschild homologies, we give smoothness criteria in terms of vanishing of some \mathbb{Z}_2 -equivariant Hochschild homology groups.

1991 Math. Subj. Class.: 14B05, 14F40, 16E40, 18G60

0. Introduction

Let k be a unital commutative ring, where 2 is invertible, and let A be an associative k-algebra with involution. We recall, [5, 14], that the definition of cyclic homology uses explicitly the action of the cyclic group $\mathbb{Z}/n\mathbb{Z}$ over the Hochschild complex.

If A is involutive, an action of the dihedral groups D_n on the Hochschild complex can be defined as in [14], and it gives two new homological theories called dihedral homology and skew dihedral homology, see also [6] and [15].

The Hochschild homology of an involutive algebra decomposes into two parts (\mathbb{Z}_2 -equivariant and skew \mathbb{Z}_2 -equivariant Hochschild homologies), and the Connes' long exact sequence splits into two long exact sequences relating dihedral homology, skew dihedral homology, \mathbb{Z}_2 -equivariant and skew \mathbb{Z}_2 -equivariant Hochschild homologies.

^{*} Corresponding author.

^{0022-4049/96/\$15.00 © 1996} Elsevier Science B.V. All rights reserved. SSDI 0022-4049(95)00083-6

In this paper we use the techniques of models developed in [3,7] to study \mathbb{Z}_2 -equivariant Hochschild homology and dihedral homology of a commutative algebra over a characteristic zero field. Most of the results obtained in the above papers can be generalized to dihedral homology. As a consequence, we give a sufficient (and necessary) condition for an involutive graded algebra to be a polynomial algebra, in terms of vanishing of some dihedral homology groups, or \mathbb{Z}_2 -equivariant Hochschild homology groups. Finally, we show that \mathbb{Z}_2 -equivariant Hochschild homology behaves well under localization. We use this result to give a positive answer to a refinement of a conjecture by Rodicio [16]. We prove:

Theorem. Let $A = \mathbb{C}[x_1, ..., x_n]/I$ be the coordinate ring of an algebraic variety of the affine space $A_n(\mathbb{C})$, containing the origin and invariant under symmetry by the origin. We endow A with the symmetry induced by $\omega(x_i) = -x_i$, for all i. If A is not smooth at the origin, then there exists an integer p > 0 such that $HH_i^+(A) \neq 0$ for all i < p and $HH_{p+4n}^+(A) \neq 0$ for all $n \in N$ (where HH^+ denotes the \mathbb{Z}_2 -equivariant Hochschild homology).

1. Dihedral homology of differential graded algebras

Let k be a commutative ring with unit where 2 is invertible. We work in the category k-DGA of k-differential graded algebras. An object (A, d_A) is the data of a graded module $A = \bigoplus_{n \in N} A_n$, $(A_0 \text{ contains } k)$, a multiplication on A such that A_n . A_p is included in A_{n+p} , and a derivation d_A of degree -1 satisfying $d_A^2 = 0, d_A(a.b) = (d_A a).b + (-1)^{|a|}a.(d_A b)$, where |a| denotes the degree of $a \in A$.

We assume furthermore that (A, d_A) is endowed with an involution ω , that is a **k**-linear map of degree zero, commuting with d_A , $\omega^2 = Id$, and satisfying

$$\omega(a,b) = (-1)^{|a|,|b|} \omega(b).\omega(a).$$

Following [8,13], we consider the bigraded Hochschild complex $(C_{pq})_{p,q \ge 0}$

$$C_{pq} = \bigoplus A_{i_0} \otimes \bar{A}_{i_1} \otimes \ldots \otimes \bar{A}_{i_n}$$

where $\overline{A} = A/k$ and the sum ranges over the (i_0, \ldots, i_p) such that $i_0 + \cdots + i_p = q$. We extend the definition of d_A to this bicomplex, and the definitions of b and B. Denote $\mathscr{C}_* = \bigoplus_{n \ge 0} \mathscr{C}_n, \mathscr{C}_n = \bigoplus_{p+q=n} C_{pq}$. We recall that $HH_*(A, d_A) = H_*(\mathscr{C}_*, b + d_A)$. Denote $\mathscr{B}_* = \bigoplus_{n \in N} \mathscr{B}_n, \mathscr{B}_n = \mathscr{C}_n \oplus \mathscr{C}_{n-2} \oplus, \ldots$, and $_Bb$ its differential

$${}_{B}b(c_{n},c_{n-2},\ldots) = ((b+d_{A})(c_{n}) + B(c_{n-2}),(b+d_{A})(c_{n-2}) + B(c_{n-4}),\ldots,)$$

We recall that $HC_*(A, d_A) = H_*(\mathscr{B}_*, {}_Bb)$

Consider the dihedral group D_p of order 2p, generated by t and u with the relations $t^p = u^2 = 1$, $u.t.u = t^{-1}$.

If (A, d_A) is endowed with an involution ω , then D_{p+1} acts on C_{pq} by t and u as

$$t(a_0 \otimes \cdots \otimes a_p) = (-1)^{p + |a_p|(|a_{p-1}| + \cdots + |a_1|)} (a_p \otimes a_0 \otimes \cdots \otimes a_{p-1}),$$

$$u(a_0 \otimes \cdots \otimes a_p) = (-1)^{p(p+1)/2 + \Phi(p)} (\omega(a_0) \otimes \omega(a_p) \otimes \cdots \otimes \omega(a_1))$$

where

$$\Phi(p) = |a_1| \sum_{i>1} |a_i| + |a_2| \sum_{i>2} |a_i| + \dots + |a_{p-1}| |a_p|$$

Lemma 1.1. bu = ub, Bu + uB = 0, $ud_A = d_A u$.

Proof. We check the two first relations as in [14], the third one is an easy calculation. So, as in [14], we have a decomposition $\mathscr{C}_* = \mathscr{C}^+_* \oplus \mathscr{C}^-_*$ into two subcomplexes

where u acts as the identity on \mathscr{C}^+_* and acts as -Id on \mathscr{C}^-_* .

Let $HH_*^+(A, d_A) = H_*(\mathscr{C}_*^+, b + d_A)$ and $HH_*^-(A, d_A) = H_*(\mathscr{C}_*^-, b + d_A)$, we have

$$HH_*(A, d_A) = HH_*^+(A, d_A) \oplus HH_*^-(A, d_A).$$

 HH_*^+ is called \mathbb{Z}_2 -equivariant Hochschild homology and HH_*^- is called skew \mathbb{Z}_2 -equivariant Hochschild homology.

Now, we put

 $\mathscr{B}_n^+ = \mathscr{C}_n^+ \oplus \mathscr{C}_{n-2}^- \oplus \mathscr{C}_{n-4}^+ \oplus \cdots$ and $\mathscr{B}_n^- = \mathscr{C}_n^- \oplus \mathscr{C}_{n-2}^+ \oplus \mathscr{C}_{n-4}^- \oplus \cdots$.

Definition 1.2. $H_*(\mathscr{B}^+_*, {}_Bb)$ is called the *dihedral homology* of (A, d_A) and denoted $HD_*(A, d_A)$.

 $H_*(\mathscr{B}_*, B^+)$ is called the *skew dihedral homology* of (A, d_A) and denoted $HSD_*(A, d_A)$ We have $HC_*(A, d_A) = HD_*(A, d_A) \oplus HSD_*(A, d_A)$

As in [14], there are long exact sequences

$$\cdots \to HH_n^+(A, d_A) \to HD_n(A, d_A) \to HSD_{n-2}(A, d_A) \to HH_{n-1}^+(A, d_A) \to \cdots$$
$$\cdots \to HH_n^-(A, d_A) \to HSD_n(A, d_A) \to HD_{n-2}(A, d_A) \to HH_{n-1}^-(A, d_A) \to \cdots$$

In the rest of the paper, we will work with commutative differential graded algebras. Such an algebra satisfies $a_n a_m = (-1)^{mn} a_m a_n$, for $a_n \in A_n$, $a_m \in A_m$. So, an involutive commutative differential graded algebra has an involution ω which is a morphism in the category of commutative differential graded algebras.

2. Models for \mathbb{Z}_2 -equivariant Hochschild homology and dihedral homology

Let (A, d_A) be a commutative differential graded algebra endowed with an involution ω . Theorem 1.3 of [10], stated for cochain algebras, remains valid since it relies on the fact that any $\mathbb{Z}/2\mathbb{Z}$ -invariant subspace of a vector space has a $\mathbb{Z}/2\mathbb{Z}$ -invariant complement. So the construction of Proposition 1.1 of [3] can be performed equivariantly and we have the following. **Theorem 2.1.** Let (A, d_A) be a commutative differential graded algebra endowed with an involution ω . Then there exists a free commutative differential graded algebra $(\Lambda V, \partial)$ and a morphism $\rho:(\Lambda V, \partial) \to (A, d_A)$ inducing an isomorphism in homology such that

(1) $V = \bigoplus_{n \in \mathbb{N}} V_n$, on each V_n , there exists an involution ω , which induces a morphism of commutative differential graded algebras,

(2) $\rho\omega = \omega\rho$.

Such an algebra $(\Lambda V, \partial)$ is called an *equivariant model* of (A, d_A) .

Remark. Let A be an involutive commutative algebra of finite type, then A is isomorphic to $k[x_1, \ldots, x_p]/I$, where the involution ω of A is the image of ω' on $k[x_1, \ldots, x_p]$ satisfying $\omega'(x_i) = \pm x_i$ for all i, and I contains $\omega'(I)$. So we can construct an equivariant model of $A, (AV, \partial)$, with $V_0 = \bigoplus_{1 \le i \le p} kx_i$ and dim $V_n < \infty$, for all n.

Proposition III. 2.9 of [8] can be transposed in this context:

Proposition 2.2. Let $f:(A, d_A) \to (B, d_B)$ be an equivariant morphism of involutive commutative differential graded algebras over a field. If f_* is an isomorphism from $H_*(A, d_A)$ to $H_*(B, d_B)$, then f induces isomorphisms between \mathbb{Z}_2 -equivariant (resp. skew \mathbb{Z}_2 -equivariant) Hochschild homology and dihedral homology.

From now on, we will assume that k is a field of characteristic zero, and using Proposition 2.2, we will work with the equivariant model $(\Lambda V, \partial)$.

In the appendix of [12], we define the module of differential forms Ω^1 of a commutative graded algebra (A, ∂) , extending the classical definition, so that Ω^1 is an (A, ∂) -differential module with a differential δ satisfying $d\partial + \delta d = 0$.

If (A, ∂) is endowed with an involution ω , we define an involution still denoted ω on Ω^1 satisfying $\omega d + d\omega = 0$, $\omega \delta = \delta \omega$.

By definition, $(\Omega^*_{(A,\partial)}, \delta)$ is the (A, ∂) -commutative differential graded algebra on Ω^1 . So the formula:

 $\omega_n(a_0 \wedge da_1 \wedge \cdots \wedge da_n) = (-1)^n \omega(a_0) d\omega(a_1) \wedge \cdots \wedge d\omega(a_n)$

defines an involution ω on $(\Omega^*_{(A,\partial)}, \delta)$ which is a morphism of commutative differential graded algebras satisfying $\omega d + d\omega = 0$.

If $(A, \partial) = (AV, \partial)$, the algebra $(\Omega^*_{(AV,\partial)})$, of differential forms has the form $(AV \otimes A\overline{V}, \delta)$ with $\overline{V} = dV$, and $\delta d + d\partial = 0$.

Now, we recall the main result of [3] (Theorem 2.4).

Proposition 2.3 (Burghelea and Vigué-Poirrier [3]). The map

 $\begin{aligned} \theta_{p,n-p} \colon C_{p,n-p}(\Lambda V,\partial) &\to (\Omega^p_{(\Lambda V,\partial)})_n \\ defined \ by \\ \theta_p(a_0 \otimes \cdots \otimes a_p) &= [(-1)^{\varepsilon_p(a)}]/p! \cdot (a_0 \wedge da_1 \wedge \cdots \wedge da_p), \end{aligned}$

where $a_0 \in \Lambda V$, $a_i \in \Lambda V/k$ if $i \ge 1$, $\varepsilon_p(a) = |a_1| + |a_3| + \cdots$ satisfies

(1) $\theta_0 b = 0, \theta_0 \partial = \delta_0 \theta, \ \theta_0 B = d_0 \theta;$

(2) θ induces isomorphisms: $HH_n(\Lambda V, \partial) \cong H_n(\Omega^*, \delta)$ for all $n \ge 0$ and $HC_n(\Lambda V, \partial) \cong HC_n(\Omega^*, \partial, \delta)$, where $HC_*(\Omega^*, \partial, \delta)$ is the total homology of the bicomplex

Lemma 2.4. The following diagram commutes

Proof. Left to the reader.

We have a decomposition $\Omega^*_{(AV,\partial)} = (\Omega^*)^+ \oplus (\Omega^*)^-$ where $(\Omega^*)^+ = \{x/\omega(x) = x\}$ and $(\Omega^*)^- = \{x/\omega(x) = -x\}$.

From Proposition 2.3 and Lemma 2.4, we have directly:

Theorem 2.5. We have explicit isomorphisms, induced by θ , for each $n \ge 0$.

$$HH_n^+(A) \cong HH_n^+(AV, \partial) \cong H_n((\Omega^*)^+, \delta) = \bigoplus_i H_n^{(i)}((\Omega^*)^+, \delta)$$

 $HD_n(A) \cong HD_n(AV, \partial) \cong HC_n((\Omega^*)^+, \delta, d) = \bigoplus_i HC_n^{(i)}((\Omega^*)^+, \delta, d),$

where

 $H^{(i)}_{\ast}((\Omega^{\ast})^{+},\delta) = H_{\ast}((\Omega^{\ast})^{+} \cap (\Omega^{i},\delta))$

 $HC^{(i)}_{*}((\Omega^{*})^{+}, \delta, d)$ is the total homology of the bicomplex

Since $H_n(\Omega_*^+, d) = ((\Omega_n^+ \cap \operatorname{Ker} d)/d(\Omega_n^-)$ and

$$H_n(\Omega_*^-, d) = ((\Omega_n^- \cap \operatorname{Ker} d)/d((\Omega_n^+)) \text{ for all } n > 0,$$

we have a similar result to Theorem 2.1 of [3]

Theorem 2.6. The map $\phi: \Omega_n^+ \oplus \Omega_{n-2}^- \oplus \cdots \to (\Omega_{n+1}^- \cap d(\Omega_n^+), \delta)$ defined by $\phi(c_n, c_{n-2} \dots) = (-1)^n dc_n$ for $c_{n-2i} \in \Omega_{n-2i}$, is a morphism of complexes and induces an isomorphism between $H\bar{D}_*(\Lambda V, \partial) = HD_*(\Lambda V, \partial)/HD_*(k)$ and $H_{*+1}(\Omega_*^- \cap d(\Omega_*^+), \delta)$. Analogously, we have an isomorphism between $HS\bar{D}_*(\Lambda V, \partial) = HSD_*(\Lambda V, \partial)/HSD_*(k)$ and $H_{*+1}(\Omega_*^+ \cap d(\Omega_*^-), \delta)$.

The famous Hochschild-Kostant-Rosenberg theorem implies that if A is smooth, then the \mathbb{Z}_2 -equivariant Hochschild homology groups $HH_n^+(A)$ are zero for n sufficiently large.

For graded algebras, we can prove a converse of this result, using the theory developed in the present paragraph. This is, in fact, the proof of a refinement of a conjecture by Rodicio [16].

Theorem 2.7. Let A be a graded algebra over a characteristic zero field, and ω an involution on A. If there exists three integers i, j, k such that i - j, j - k and i - k are not divisible by 4, and

 $HH_{i}^{+}(A) = HH_{i}^{+}(A) = HH_{k}^{+}(A) = 0$

then A is a polynomial algebra.

Proof. The proof relies on Theorem 2.6 and the existence of a minimal model for a graded algebra. Then, we proceed as in the proofs of theorems 1 and 2 of [18]. If A is not a polynomial algebra, we write $A = k[x_1, \ldots, x_m]/I$, with $I \neq 0$, and we consider the elements $Z_{m+2n} = (dx_1 \ldots dx_m)(dy)^n$, and their images by the involution ω . Since A is graded, we have short exact sequences:

$$0 \to HS\bar{D}_{n-1}(A, d_A) \to HH_n^+(A, d_A) \to H\bar{D}_n(A, d_A) \to 0$$
$$0 \to H\bar{D}_{n-1}(A, d_A) \to HH_n^-(A, d_A) \to HS\bar{D}_n(A, d_A) \to 0$$

The elements Z_{m+2n} define nonzero classes in $H\overline{D}_{m+2n-1}$ or $HS\overline{D}_{m+2n-1}$, depending on the actions of ω . This allows us to determine when the groups $HH_n^+(A)$ are not zero.

Remark. In [18], it is proven that if A is not a polynomial algebra, then $HC_n(A) \neq 0$ for infinitely many n. Here we cannot prove the same result for dihedral homology or skew dihedral homology, but instead, it is valid for \mathbb{Z}_2 -equivariant Hochschild homology.

3. Localization of \mathbb{Z}_2 -equivariant Hochschild homology. Applications

Let A be a commutative algebra. One of the most important properties of Hochschild homology, specially for geometrical applications, is that it is well-behaved with respect to localization. Explicitly, if S is a multiplicatively closed subset of A, and $A_S = S^{-1}A$, then by a result of Brylinski [2]

 $HH_*(A_S) = HH_*(A) \otimes_A A_S$

If A is provided with an involution ω , and A^+ is the subalgebra of the elements of A fixed by ω , then $HH_n^+(A)$ is no more an A-algebra but an A^+ -algebra.

Let S be a multiplicatively closed subset of A, stable by the involution (i.e. $\omega(S)$ is included in S), and let $S^+ = \{s \in S/\omega(s) = s\}$.

Then $1 \in S^+$, and S^+ is also a multiplicatively closed subset of A.

If $a, a' \in A$, $s, s' \in S$, then a/s = a'/s' in A_s if and only if $\exists t \in S$ such that t.(as' - a's') = 0. In this case, $\omega(a)/\omega(s) = \omega(a')/\omega(s')$ in A_s .

So, the formula $\omega(a/s) = \omega(a)/\omega(s)$ makes sense and defines an involution on A_s .

Lemma 3.1. The inclusion $i: A_{S+} \to A_S$; i(a/s) = a/s is an isomorphism of algebras, such that $\omega i = i\omega$.

Proof. It is clear that *i* is a morphism of algebras which is injective.

It is also surjective because if $a/s \in A_s$, then $a/s = a.\omega(s)/s.\omega(s)$ in A_s , and $s.\omega(s) \in S^+$.

As a consequence of this lemma, from now on we can suppose $S = S^+$.

Consider now an A-bimodule M, which is A^+ -symmetric (i.e. rm = mr, for $r \in A^+, m \in M$), provided with an involution ω_M compatible with ω .

More explicitly, ω_M is k-linear, $\omega_M^2 = id_M$, and if $a, b \in A, m \in M$, then $\omega_M(a.m.b) = \omega(b) \cdot \omega_M(m) \cdot \omega(a)$. We denote by $M^+ = \{m \in M / \omega_M(m) = m\}$.

As in the previous sections, the Hochschild complex $C_*(A, M)$ can be decomposed into $C^+_*(A, M)$ and $C^-_*(A, M)$, whose homologies are, respectively, $H^+_*(A, M)$ and $H^-_*(A, M)$ [14].

 $H_*(A, M)$, (resp. $H^+_*(A, M)$) has a natural structure of symmetric A-bimodule (resp. A^+ -bimodule).

If S is a multiplicatively closed subset of A, suppose $S = S^+$, and define $M_S = A_S^+ \otimes_{A^+} M \otimes_{A^+} A_S^+$.

Remark. $(M^+)_S \cong (M_S)^+$ as A_S^+ -bimodule.

Theorem 3.2. In the above conditions,

 $H^+_*(A_S, M_S) \cong [H^+_*(A, M)]_S$ (and analogously for H^-)

Proof. First observe that the functor $X \rightarrow X^+$ from the category of symmetric Abimodules to the category of A^+ -bimodules is well-defined and exact. Also, let $\eta_0: [H_0(A, M)]_S \to H_0(A_S, M_S)$ be the natural isomorphism induced by $\overline{f}: M/[A, M] \to M_S/[A_S, M_S]; \overline{f}(\overline{m}) = c1(1 \otimes m \otimes 1).$

By a theorem of Grothendieck [9], as η_0 is an isomorphism and we also have natural functors $\eta_n: [H_n(A, M)]_S \to H_n(A_S, M_S)$ for $n \ge 0$, then $[H_*(A, M)]_S$ is isomorphic to $H_*(A_S, M_S)$.

Also, η_0 commutes with the involution. So, $[H^+_*(A, M)]_S \cong [(H_*(A, M))^+]_S$. By the previous remark, this last term is identical with $([H_*(A, M)]_S)^+$, and by the result of Brylinski, this equals $[H_*(A_S, M_S)]^+ = H^+_*(A_S, M_S)$.

Now, we apply Theorem 3.2 to the characterization of smoothness in terms of the nullity of some \mathbb{Z}_2 -equivariant Hochschild homology groups. In [16], the author conjectures:

Let **k** be a field of characteristic zero and let A be a **k**-algebra of finite type. If $HH_n(A) = 0$ for n sufficiently large, then A is a smooth **k**-algebra.

In [4, 1], the authors prove the conjecture, under the less restrictive assumption that there exists two Hochschild homology groups HH_{2i} and HH_{2i+1} which vanish.

Here, we give a similar result for involutive commutative algebras.

Theorem 3.3. Let $A = \mathbb{C}[x_1, ..., x_m]/I$ be a reduced commutative algebra of finite type. We assume that A is the coordinate ring of an algebraic subset V containing the origin and symmetric by the origin (so, the involution $\omega(x_i) = -x_i$ for all i, induces an involution on A).

Then, if V is not smooth at the origin, there exists an integer p such that $HH_i^+(A) \neq 0$ for all i < p, and $HH_{p+4n}^+(A) \neq 0$ for all $n \in N$.

Proof. We recall that an algebraic subset V of the affine space $A_m(\mathbb{C})$ is defined by the data of a family of polynomials $(P_i)_{i \in I}$, $P_i \in \mathbb{C}[x_1, \dots, x_m]$ and

 $V = \{(a_1, \ldots, a_m) \in \mathbb{C}^m / P_i(a_1, \ldots, a_m) = 0, \text{ for all } i\}.$

If we denote by I(V) the ideal generated by the polynomials Q such that $Q(a_1, \ldots, a_m) = 0$, for all $(a_1, \ldots, a_m) \in V$, then I(V) is equal to the radical of the ideal generated by the family $(P_i)_{i \in I}$. Then $A = \mathbb{C}[x_1, \ldots, x_m]/I(V)$ is called the coordinate ring of V. From the Nullstellensatz theorem, we have a one-to-one correspondence between reduced commutative algebras of finite type and coordinate rings of algebraic subsets.

Now consider an algebraic set V containing the origin O. Let σ be the central symmetry of center O in $A_m(\mathbb{C})$, we assume that V contains $\sigma(V)$. We denote by ω the algebra morphism on $\mathbb{C}[x_1, \ldots, x_m]$ defined by $\omega(x_i) = -x_i$ for all *i*. If $\sigma(V)$ is a subset of V we can find generators P_1, \ldots, P_r of I(V) such that $\omega(P_j) = \pm P_j$, for all $j \in [1, \ldots, r]$. In the following, $A = \mathbb{C}[x_1, \ldots, x_m]/I(V)$ will be endowed with the image of this involution ω . Let $\mathfrak{M}' = (x_1, \ldots, x_m)$ and $\mathfrak{M} = \mathfrak{M}'/I$. From Theorem 3.2, we have $HH^+_*(A_{\mathfrak{M}}) \cong HH^+_*(A) \otimes_{A^+} (A^+)_{S^+}$, with $S^+ = \{s \in \mathbb{C}[x_i] - \mathfrak{M}/\omega(s) = s\}$.

So we work with the local ring $A_{\mathfrak{M}}$ endowed with the induced involution. Since $\omega(x_i) = -x_i$ for all *i*, the ideal \mathfrak{M}' has a minimal set of generators on which ω operates as -Id. A classical argument [I], shows that we can write $A_{\mathfrak{M}} = A_0/J$ with A_0 a local regular ring of maximal ideal \mathfrak{N} , *J* is contained in \mathfrak{N}^2 and A_0 has an involution ω that operates as -Id on a minimal set of generators (f_1, \ldots, f_p) of \mathfrak{N} . Furthermore, we have $A_0/\mathfrak{N} \cong \mathbb{C}$.

Tate's construction [17], allows us to say that there exists a minimal commutative graded differential algebra $(A_0 \otimes \Lambda V, \partial), V = \bigoplus_{n \ge 1} V_n$, and a map from $(A_0 \otimes \Lambda V, \partial)$ onto A_0/J which induces an isomorphism in homology.

On the other hand, since A is involutive, we can build this model such that each V_n is endowed with an involution which is a morphism of commutative differential graded algebras, extending the involution of A_0 .

In [7, 19], it is proved that the Hochschild homology of A_0/J is isomorphic to the homology of $(\Omega_{A_0}^* \otimes \Omega_{AV}^*, \delta)$ with $\delta d + d\partial = 0$.

A similar argument to those of Section 2 shows that

 $HH^+_*(A_{\mathfrak{M}}) = H_*((\Omega^*_{A_0} \otimes \Omega^*_{AV})^+, \delta)$

Then the proof is the same as in [1]; if $A_{\mathfrak{M}}$ is not local regular, then $J \neq 0$, so we have $V_1 \neq 0$, we can find an element $y \in V_1$ such that $\omega(y) = \pm y$. Since $\omega(f_i) = -f_i$ for all *i*, we have $\omega(df_i) = df_i$.

For $n \in N$, we put $Z_{4n+p} = (df_1 \dots df_p)(dy)^{2n}$, then $\omega(Z_{4n+p}) = Z_{4n+p}$, so $Z_{4n+p} \in (\Omega^*_{A_0} \otimes \Omega^*_{AV})^+$.

We conclude as in [1].

Acknowledgements

We wish to thank Matias Graña who contributed to the proof of Theorem 3.2.

References

- L. Avramov and M. Vigué-Poirrier, Hochschild homology criteria for smoothness, Internat. Math. Notices (Appendix to Duke Math. J.) 65 (1992) 17-25.
- [2] J.-L. Brylinski, Central localization in Hochschild homology, J. Pure Appl. Algebra 57 (1989) 1-4.
- [3] D. Burghelea and M. Vigué-Poirrier, Cyclic homology of commutative algebras, Lecture Notes in Mathematics, Vol. 1318 (1988) 51–72.
- [4] A. Campillo, J. Guccione, J.J. Guccione, M.J. Redondo, A. Solotar and O. Villamayor, A. Hochschild homology criterium for the smoothness of an algebra, Comment. Math. Helv. 69 (1994) 163–168.
- [5] A. Connes, Non commutative differential geometry, Publ. Math. IHES 62 (1985) 41-144.
- [6] G. Cortinas, L-theory and dihedral homology II, Topology Appl. 51 (1993) 53-69.
- [7] G. Cortinas, J. Guccione and J.J. Guccione, Decomposition of the Hochschild and cyclic homology of commutative differential graded algebras, J. Pure Appl. Algebra to appear.
- [8] T. Goodwillie, Cyclic homology, derivations and the free loop space, Topology 24 (1985) 187-215.
- [9] A. Grothendieck, Sur quelques points d'algèbre homologique, Tçhoku Math. J. 9 (1957) 119-221.
- [10] K. Grove, S. Halperin and M. Vigué-Poirrier, The rational homotopy theory of certain path spaces with application to geodesics, Acta Math 140 (1978) 289–307.

- [11] G. Hochschild, B. Kostant and A. Rosenberg, Differential forms on regular affine algebras, Trans. AMS 102 (1962) 383-405.
- [12] C. Kassel and M. Vigué-Poirrier, Homologie des quotients primitifs de l'algèbre enveloppante de sl(2), Math. Ann. 294 (1992) 483-502.
- [13] R. Krasaukas and Y. Solov'ev, Rational hermitian K-theory and dihedral homology, Math. USSR, Izvestiya 33(2) (1989) 261-293.
- [14] J.-L. Loday, Homologie diedrale et quaternionique, Adv. Math. 66 (1987) 119-148.
- [15] J.-M. Lodder, Dihedral homology and hermitian K-theory, New Mexico State University, Preprint.
- [16] A. Rodicio, Smooth algebras and vanishing of Hochschild homology, Comment. Math. Helv. 65 (1990) 474-477.
- [17] J. Tate, On the homology of Noetherian rings and of local rings, III. J. Math. 1 (1957) 14-27.
- [18] M. Vigué-Poirrier, Critère de nullité pour l'homologie des algèbres graduées, C.R. Acad, Sci. Paris 317 (1993) 647–649.
- [19] M. Vigué-Poirrier, Homologie et K-théorie des algèbres commutatives. Caractérisation des intersections complètes, J. Algebra 173 (1995) 679-695.