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Abstract 

Let A be an associative k-algebra with involution, where k is a commutative ring of 
characteristic not equal to two. Then the dihedral groups act on the Hochschild complex 
and, following Loday, a new homological theory, called dihedral homology, can be defined 
generalizing the notion of cyclic homology defined by Connes. Here we give a model 
to compute dihedral homology of a commutative algebra over a characteristic zero field. 
As, for an involutive algebra, we have a decomposition of Hochschild homology into 
a direct sum of two k-modules: Z,-equivariant and skew iZ,-equivariant Hochschild 
homologies, we give smoothness criteria in terms of vanishing of some Z,-equivariant 
Hochschild homology groups. 

1991 Math. Subj. Class.: 14B05, 14F40, 16E40, 18G60 

0. Introduction 

Let k be a unital commutative ring, where 2 is invertible, and let A be an associative 

k-algebra with involution. We recall, [S, 141, that the definition of cyclic homology 

uses explicitly the action of the cyclic group H/nZ over the Hochschild complex. 

If A is involutive, an action of the dihedral groups D, on the Hochschild complex 

can be defined as in [14], and it gives two new homological theories called dihedral 

homology and skew dihedral homology, see also [6] and [ 151. 

The Hochschild homology of an involutive algebra decomposes into two parts 

(Zz-equivariant and skew Zz-equivariant Hochschild homologies), and the Connes’ 

long exact sequence splits into two long exact sequences relating dihedral homology, 

skew dihedral homology, Z,-equivariant and skew H,-equivariant Hochschild 
homologies. 
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In this paper we use the techniques of models developed in [3,7] to study 

Z,-equivariant Hochschild homology and dihedral homology of a commutative 

algebra over a characteristic zero field. Most of the results obtained in the above 

papers can be generalized to dihedral homology. As a consequence, we give a suffi- 

cient (and necessary) condition for an involutive graded algebra to be a polynomial 

algebra, in terms of vanishing of some dihedral homology groups, or Z,-equivariant 

Hochschild homology groups. Finally, we show that Z,-equivariant Hochschild 

homology behaves well under localization. We use this result to give a positive answer 

to a refinement of a conjecture by Rodicio [16]. We prove: 

Theorem. Let A = @[xl, . . ,x,-J/I be the coordinate ring of an algebraic variety of the 

a&e space A,(@), containing the origin and invariant under symmetry by the origin. We 

endow A with the symmetry induced by O(xi) = - xi, for all i. If A is not smooth at the 

origin, then there exists an integer p > 0 such that HHF(A) # 0 for all i < p and 

HH+ r+&A) # 0 for all n E N (where HH+ denotes the Z2-equivariant Hochschild 

homology). 

1. Dihedral homology of differential graded algebras 

Let k be a commutative ring with unit where 2 is invertible. We work in the category 

k-DGA of k-differential graded algebras. An object (A,d,) is the data 

of a graded module A = OnEN A,, (A,, contains k), a multiplication on A such that 

A,. A, is included in A,,+r, and a derivation dA of degree - 1 satisfying 

di = 0, d,(a.b) = (d,a).b + (- l)“‘a. (d,b), where [a( denotes the degree of a E A. 

We assume furthermore that (A,d,) is endowed with an involution w, that is 

a k-linear map of degree zero, commuting with d*, co2 = Id, and satisfying 

w(a.b) = (- l)‘“l.“‘w(b).o(a). 

Following [8,13], we consider the bigraded Hochschild complex (C,,),,, k O 

C,,= @Ai,OAi,O . . . @Ail, 

where A = A/k and the sum ranges over the (iO, . . . ,i,) such that i0 + ... + i, = q. 

We extend the definition of dA to this bicomplex, and the definitions of b and B. 

Denote %?* = 0, Z ,,%$, V,, = @P+4ZnCpq. 

We recall that HH,(A, dA) = H,(%‘*, b + dA). 
Denote && = OncN B,,, a,, = %?,, 0 %Tnm2 0, . , and Bb its differential 

d+,,c,-2, . . . 1 = Nb + 4J(4 + &,-2L(b + d,J(c,-2) + WC,-4, . . . ,) 

We recall that HC,(A, dA) = H,(B.+., Bb) 
Consider the dihedral group D, of order 2p, generated by t and u with the relations 

tp = a2 = 1 at.u = t-1. 2 . 
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If (A, dA) is endowed with an involution w, then D,+ 1 acts on C,, by t and u as 

t&@...@a,)=(-1) P + l%l(la,~ll + “’ +lall) ($ @ a0 @ . . . @ (+ I), 

u(q)@ . . . @ ap) = (_ l)P(P + 1112 +6(P) (44l) 0 Q4ap) 0 “. 0 dad), 
where 

Q(P) = Iall C Iail + Ia21 2 Iail + “’ + lap-II lapI. 
i>l i>2 

Lemma 1.1. bu = ub, Bu + uB = 0, udA = dAu. 

Proof. We check the two first relations as in [14], the third one is an easy calculation. 

So, as in [14], we have a decomposition Q?* = VG @ V; into two subcomplexes 

where u acts as the identity on wz and acts as -Id on %?G. 

Let HH: (A, dA) = H,(Vz , b + dA) and HH, (A, dA) = H,(%‘;, b + dA), we have 

HH,(A,d/J = HH*+(A,d,)@ HH,(A,d,). 

HH: is called Z,-equivuriunt Hochschild homology and HH; is called skew Zz- 

equivuriunt Hochschild homology. 

Now, we put 

Definition 1.2. H,(gi, B b) is called the dihedral homology of (Ad,) and denoted 

HD, (A, d/i). 
H,(LJ?;, Bb) is called the skew dihedral homology of (A, dA) and denoted HSD,(A, d,) 

We have HC,(A, dA) = HD, (A, dA) 0 HSD,(A, dA) 
As in [14], there are long exact sequences 

... + HH,+(A,d,) + HD,(A,dA) + HSD,_2(A,dA) + HH,+_ l(A,dA) -+ ... 

... -+ HH,(A,d,) + HSD,(A,dA) + HD,_2(A,dA) -+ HH,I(A,dA) + ... 

In the rest of the paper, we will work with commutative differential graded algebras. 

Such an algebra satisfies a,.~,,, = (- 1) mnu,.un, for a, E A,, a, E A,. So, an involutive 

commutative differential graded algebra has an involution o which is a morphism in 

the category of commutative differential graded algebras. 

2. Models for Z,-equivariant Hochschild homology and dihedral homology 

Let (A,d,) be a commutative differential graded algebra endowed with an involu- 

tion o. Theorem 1.3 of [lo], stated for cochain algebras, remains valid since it relies on 

the fact that any 12/2Z-invariant subspace of a vector space has a Z/27?-invariant 

complement. So the construction of Proposition 1.1 of [3] can be performed 

equivariantly and we have the following. 
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Theorem 2.1. Let (A, dA) be a commutative differential graded algebra endowed with an 

involution CO. Then there exists a free commutative difirential graded algebra (AI/, a) 

and a morphism p:(AV,a) -+ (A, dA) inducing an isomorphism in homology such that 

(1) V = @nsNK, on each V,,, there exists an involution o, which induces a morphism 

of commutative difSerentia1 graded algebras, 

(2) po = op. 

Such an algebra (A V, a) is called an equivariant model of (A, dA). 

Remark. Let A be an involutive commutative algebra of finite type, then A is 
isomorphic to k[xr, . . . ,x,1/I, where the involution w of A is the image of CO’ on 
k[xr, . . . ,x,] satisfying W’(xi) = + xi for all i, and I contains o’(l). So we can 
construct an equivariant model of A, (A V, a), with V, = @t S i sp kXi and dim V, < 00, 

for all n. 

Proposition III. 2.9 of [S] can be transposed in this context: 

Proposition 2.2. Let f:(A,d,) -+ (B,d,) be an equivariant morphism of involutive com- 

mutative difirential graded algebras over a$eld. Iff, is an isomorphism from H,(A,d,J 

to H,(B,dJ, then f induces isomorphisms between Z,-equivariant (resp. skew Zz- 

equivariant) Hochschild homology and dihedral homology. 

From now on, we will assume that k is a field of characteristic zero, and using 
Proposition 2.2, we will work with the equivariant model (AI/, a). 

In the appendix of [12], we define the module of differential forms Sz’ of a com- 
mutative graded algebra (A,a), extending the classical definition, so that Q1 is an 
(A,a)-differential module with a differential 6 satisfying dd + 6d = 0. 

If (A, a) is endowed with an involution CO, we define an involution still denoted o on 

Sz 1 satisfying od + dw = 0, 06 = 6~. 

By definition, (Q&a,, 6) is the (A, a)-commutative differential graded algebra on Q r. 
So the formula: 

co,(a, A da1 A ... A da,,) = (- l)“w(aO)dw(aI) A ... A do(a,) 

defines an involution w on (Q,*,,,,, 6) which is a morphism of commutative differential 

graded algebras satisfying od + do = 0. 

If (A,a) = (AV,a), the algebra (Q&,,,,, of differential forms has the form 
(AV @ Ar, 6) with v = dV, and 6d + da = 0. 

Now, we recall the main result of [3] (Theorem 2.4). 

Proposition 2.3 (Burghelea and Vigut-Poirrier [3]). The map 

h-P: c,dnv,a) + vxAv,dn 
defined by 

g,(a0 0 ... @a,) = [( - l)“~‘“‘]/p! .(a0 A da1 A ... A da,), 
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where a0 E AV, ai E AV/k if i 2 1, ~~(a) = jaI( + laJl + ... satisJies 

(1) 8,,b = 0, &,a = ~5~8, B,,B = d,B; 
(2) 0 induces isomorphisms: HH,(AV, a) g H,(Q*, 6) for all n 2 0 and HC,(AV, ?) 

z HC,@*, 8,6), h w ere HC,(Q*, a, 6) is the total homology of the bicomplex 

i I . . . ‘- @*I” L (Q*)n-l <- . . . 

(5 I I Is 

. . . <- @*Ll 2--- (Q*)“-, <- . . . 

Lemma 2.4. The following diagram commutes 

U 
i I % 

c,(nv,a) 7 0~ ,A”.?) 
P 

Proof. Left to the reader. 

We have a decomposition SZhv,aj = (sZ*)‘@(Q*)- where (8*)+ = {X/W(X) = x} 
and (52*)- = (x/o(x) = -x}. 

From Proposition 2.3 and Lemma 2.4, we have directly: 

Theorem 2.5. We have explicit isomorphisms, induced by 8, for each n 2 0. 

HH:(A) 2 HHJ(AV’, a) z H,((O*)+, 6) = @iHf’((Q*)‘, 6) 

HI),(A) z HD,,(AV, a) E HC,((O*)+, 6, d) = @i HCf’((Q*)+, 6, d), 

where 
H;‘((Q*)+,@ = H,((Q*)+n(Q’,J)) 

HCs’((Q*)+, 6, d) is the total homology of the bicomplex 

i I . . . c_- (!2;)+ & (a;-‘)- - . . 
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Since H,(Qz,d) = ((Q~nKerd)/d(Q,) and 

H,(Q,,d) = ((SZ;nKerd)/d((QT) for all n > 0, 

we have a similar result to Theorem 2.1 of [3] 

Theorem 2.6. The map $:Q~@Q~_z 0 ... -+(O,,nd(Q,+),6) dejined by 

$(G,C,-2 ..’ ) = (- l)“dc, for c, _ 2i E Sz, _ li, is a morphism of complexes and induces an 

isomorphism between HB,(AV,d) = HD,(AV,8)/HD,(k) and H,+,(Q,nd(Q,+), 6). 

Analogously, we have an isomorphism between HSD,(AV, a) = HSD,(AV, d)/HSD,(k) 
and H,+,(SZ~nd(Q,),6). 

The famous Hochschild-Kostant-Rosenberg theorem implies that if A is smooth, 

then the Z,-equivariant Hochschild homology groups HHz(A) are zero for n suffi- 

ciently large. 

For graded algebras, we can prove a converse of this result, using the theory 

developed in the present paragraph. This is, in fact, the proof of a refinement of 

a conjecture by Rodicio [16]. 

Theorem 2.7. Let A be a graded algebra over a characteristic zero jield, and o an 

involution on A. If there exists three integers i, j, k such that i -j, j - k and i - k are not 
divisible by 4, and 

HH: (A) = HH,+ (A) = HH; (A) = 0 

then A is a polynomial algebra. 

Proof. The proof relies on Theorem 2.6 and the existence of a minimal model for 

a graded algebra. Then, we proceed as in the proofs of theorems 1 and 2 of [ 181. If A is 
not a polynomial algebra, we write A = k[xl, .,. , x,]/l, with I # 0, and we consider 

the elements Zm+2n = (dxI . . . dx,)(dy)“, and their images by the involution w. Since 

A is graded, we have short exact sequences: 

O+HSD,_l(A,d,,J -+ HH,+(A,d,) -+ Hb,(A,dJ +O 

0 -+ HD,_ ,(A, dA) + HH, (A, dA) + HSb,(A, d/J -+ 0 

The elements Z, + 2n define nonzero classes in HD,,, + *,, _ 1 or HSDm + 2n _ 1, depending 

on the actions of o. This allows us to determine when the groups HHi(A) are not 

zero. 

Remark. In [18], it is proven that if A is not a polynomial algebra, then HC,(A) # 0 
for infinitely many n. Here we cannot prove the same result for dihedral homology or 

skew dihedral homology, but instead, it is valid for Z,-equivariant Hochschild 

homology. 
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3. Localization of Z’,-equivariant Hochschild homology. Applications 

Let A be a commutative algebra. One of the most important properties of Hoch- 

schild homology, specially for geometrical applications, is that it is well-behaved with 

respect to localization. Explicitly, if S is a multiplicatively closed subset of A, and 

As = S- ‘A, then by a result of Brylinski [2] 

HH*(As) = HH,(A)OAAS 

If A is provided with an involution w, and A+ is the subalgebra of the elements of 

A fixed by o, then HHL(A) is no more an A-algebra but an A+-algebra. 

Let S be a multiplicatively closed subset of A, stable by the involution (i.e. u(S) is 

included in S), and let S+ = (s ES/W(S) = s>. 

Then 1 ES+, and S+ is also a multiplicatively closed subset of A. 

If a, a’ E A, s,s’ ES, then a/s = al/s’ in A s if and only if 3t ES such that 

t.(as’ - a’s’) = 0. In this case, w(a)/w(s) = w(a’)/co(s’) in As. 

So, the formula co(a/s) = w(a)/o(s) makes sense and defines an involution on As. 

Lemma 3.1. The inclusion i: As+ + As; i(a/s) = a/s is an isomorphism of algebras, such 

that oi = io. 

Proof. It is clear that i is a morphism of algebras which is injective. 

It is also surjective because if a/s E As, then a/s = a.w(s)/s.W(s) in As, and s.w(s) ES+. 

As a consequence of this lemma, from now on we can suppose S = S”. 

Consider now an A-bimodule M, which is A+-symmetric (i.e. rm = mr, for 

r E A+, m E M), provided with an involution OM compatible with U. 

More explicitly, Ok is k-linear, oh = idM, and if a,bEA,mEM, then 

o,(a.m.b) = o(b).w,(m)‘o(a). We denote by M+ = {m E M/o,(m) = m}. 

As in the previous sections, the Hochschild complex C,(A, M) can be decomposed 

into Cz (A, M) and C,(A, M), whose homologies are, respectively, Hz (A, M) and 

H, (A, M) C141. 
H,(A, M), (resp. H,f (A, M)) has a natural structure of symmetric A-bimodule (resp. 

A +-bimodule). 

If S is a multiplicatively closed subset of A, suppose S = S+, and define 

Ms = A; BA+M&+A;. 

Remark. (M+)s z (Ms)+ as Ai-bimodule. 

Theorem 3.2. In the above conditions, 

Hl (As, Ms) z [Hz (A, M )Is (and analogously for H -) 

Proof. First observe that the functor X -+X+ from the category of symmetric A- 

bimodules to the category of A+-bimodules is well-defined and exact. 
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Also, let ylO: [H,(A,M)], + HO(As,M,) be the natural isomorphism induced by 
fM/[A,M] -+M,/[A,,M,];J(rn) = cl(l@m@l). 

By a theorem of Grothendieck [9], as q. is an isomorphism and we also have 
natural functors q,,: [H,,(A, M)], -+ H,(&, M,) for n 2 0, then [H,(A, M)ls is isomor- 
phic to H,(& M,). 

Also, q. commutes with the involution. So, [Hl(A, M)], g [(H,(A, M))+],. By the 
previous remark, this last term is identical with ([H,(A, M)]s)+, and by the result of 
Brylinski, this equals [H,(A,, M,)] + = Hf (As, Ms). 

Now, we apply Theorem 3.2 to the characterization of smoothness in terms of the 
nullity of some Z,-equivariant Hochschild homology groups. 
In [16], the author conjectures: 

Let k be a field of characteristic zero and let A be a k-algebra of finite type. If 

HH,(A) = 0 for n sufficiently large, then A is a smooth k-algebra. 

In [4,1], the authors prove the conjecture, under the less restrictive assumption that 
there exists two Hochschild homology groups HHzi and HH,j+ 1 which vanish. 

Here, we give a similar result for involutive commutative algebras. 

Theorem 3.3. Let A = C[xI, . . . , x,]/I be a reduced commutative algebra offinite type. 

We assume that A is the coordinate ring of an algebraic subset V containing the origin 

and symmetric by the origin (so, the involution O(xi) = -xi for all i, induces an 

involution on A). 

Then, if V is not smooth at the origin, there exists an integer p such that HH: (A) # 0 

for all i c p, and HHl+,,(A) # 0 for all n EN. 

Proof. We recall that an algebraic subset V of the affine space&(@) is defined by the 
data of a family of polynomials (Pi)iEI, Pi E @ [xi, . . , ,x,1 and 

V = {(al, . . . , a,) E @*/Pi(al, . . . , a,) = 0, for all i>. 

If we denote by I(V) the ideal generated by the polynomials Q such that 

Q(a 1, ... , a,) = 0, for all (aI, . , a,) E V, then Z(V) is equal to the radical of the ideal 
generated by the family (Pi)ipl. Then A = @[x1, . . . , x,]/Z(V) is called the coordinate 
ring of V. From the Nullstellensatz theorem, we have a one-to-one correspondence 
between reduced commutative algebras of finite type and coordinate rings of algebraic 
subsets. 

Now consider an algebraic set V containing the origin 0. Let 0 be the central 
symmetry of center 0 in A,(@), we assume that V contains a(V). We denote by o the 
algebra morphism on @[xi, . . . ,x,1 defined by W(xi) = -xi for all i. If o(V) is 
a subset of V we can find generators Pi, . . . , P, of I(V) such that w(Pj) = f Pj, for all 

jE[l, . . . , r]. In the following, A = C[xI, . . . ,x,]/l(V) will be endowed with the 
image of this involution o. Let !lX’ = (x1, . , x,) and llJl = YJ?/Z. From Theorem 3.2, 
we have HHL(A,) g HHG(A) @A+(A+)s+, with S+ = {S E@[xJ - ‘9X/0(s) = s}. 
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So we work with the local ring Ast endowed with the induced involution. Since 
O(xi) = - xi for all i, the ideal YJ? has a minimal set of generators on which w operates 
as -Id. A classical argument [I], shows that we can write Am = Ao/J with A0 a local 
regular ring of maximal ideal ‘%, J is contained in !R2 and A0 has an involution o that 
operates as -Id on a minimal set of generators (ii, . . . , f,) of %. Furthermore, we 
have A,,/% z @. 

Tate’s construction [17], allows us to say that there exists a minimal commutative 
graded differential algebra (A0 @ (IV, a), V =@,, z 1 V,, and a map from (A, @ LIT/, 8) 

onto Ao/J which induces an isomorphism in homology. 
On the other hand, since A is involutive, we can build this model such that each V, is 

endowed with an involution which is a morphism of commutative differential graded 
algebras, extending the involution of Ao. 

In [7,19], it is proved that the Hochschild homology of Ao/J is isomorphic to the 
homology of (52:” 0 52,*,, 6) with 6d + da = 0. 

A similar argument to those of Section 2 shows that 

Then the proof is the same as in [l]; if Am is not local regular, then J # 0, so we 
have I/, # 0, we can find an element y E Vi such that w(y) = + y. Since I = -fi 
for all i, we have o(&) = dfi. 

For HEN, we put Z,,,, = (dfi . . . dfp)(dy)2”, then w(Z~~+~) = Zbntg, so 
Z 4n+p GGD 0 Q,*“)+. 

We conclude as in [l]. 
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