JOURNAL OF
PURE AND
APPLIED ALGEBRA

Dihedral homology of commutative algebras

Andrea Solotar ${ }^{2, \mathrm{~b}}$, Micheline Vigué-Poirrier ${ }^{\mathrm{b}, *}$
${ }^{2}$ Dto de Matematica, Fac. de Cs. Exactas, Univ. de Buenos Aires, Argentina and CONICET, Argentina
${ }^{b}$ Department of Mathematics, Institut Galilee, Université de Paris XIII, 93430 Villetaneuse, France

Communicated by C.A. Weibel; received 13 July 1994; revised 13 February 1995

Abstract

Let A be an associative \boldsymbol{k}-algebra with involution, where \boldsymbol{k} is a commutative ring of characteristic not equal to two. Then the dihedral groups act on the Hochschild complex and, following Loday, a new homological theory, called dihedral homology, can be defined generalizing the notion of cyclic homology defined by Connes. Here we give a model to compute dihedral homology of a commutative algebra over a characteristic zero field. As, for an involutive algebra, we have a decomposition of Hochschild homology into a direct sum of two k-modules: \mathbb{Z}_{2}-equivariant and skew \mathbb{Z}_{2}-equivariant Hochschild homologies, we give smoothness criteria in terms of vanishing of some \mathbb{Z}_{2}-equivariant Hochschild homology groups.

1991 Math. Subj. Class.: 14B05, 14F40, 16E40, 18G60

0. Introduction

Let \boldsymbol{k} be a unital commutative ring, where 2 is invertible, and let A be an associative \boldsymbol{k}-algebra with involution. We recall, [5,14], that the definition of cyclic homology uses explicitly the action of the cyclic group $\mathbb{Z} / n \mathbb{Z}$ over the Hochschild complex.

If A is involutive, an action of the dihedral groups \boldsymbol{D}_{n} on the Hochschild complex can be defincd as in [14], and it gives two new homological theories called dihedral homology and skew dihedral homology, see also [6] and [15].

The Hochschild homology of an involutive algebra decomposes into two parts (\mathbb{Z}_{2}-equivariant and skew \mathbb{Z}_{2}-equivariant Hochschild homologies), and the Connes' long exact sequence splits into two long exact sequences relating dihedral homology, skew dihedral homology, \mathbb{Z}_{2}-equivariant and skew \mathbb{Z}_{2}-equivariant Hochschild homologies.

[^0]In this paper we use the techniques of models developed in [3,7] to study \mathbb{Z}_{2}-equivariant Hochschild homology and dihedral homology of a commutative algebra over a characteristic zero field. Most of the results obtained in the above papers can be generalized to dihedral homology. As a consequence, we give a sufficient (and necessary) condition for an involutive graded algebra to be a polynomial algebra, in terms of vanishing of some dihedral homology groups, or \mathbb{Z}_{2}-equivariant IIochschild homology groups. Finally, we show that \mathbb{Z}_{2}-equivariant IIochschild homology behaves well under localization. We use this result to give a positive answer to a refinement of a conjecture by Rodicio [16]. We prove:

Theorem. Let $A=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I$ be the coordinate ring of an algebraic variety of the affine space $A_{n}(\mathbb{C})$, containing the origin and invariant under symmetry by the origin. We endow A with the symmetry induced by $\omega\left(x_{i}\right)=-x_{i}$, for all i. If A is not smooth at the origin, then there exists an integer $p>0$ such that ${H H_{i}^{+}}^{+}(A) \neq 0$ for all $i<p$ and $H H_{p+4 n}^{+}(A) \neq 0$ for all $n \in N$ (where HH^{+}denotes the \mathbb{Z}_{2}-equivariant Hochschild homology).

1. Dihedral homology of differential graded algebras

Let \boldsymbol{k} be a commutative ring with unit where 2 is invertible. We work in the category \boldsymbol{k}-DGA of \boldsymbol{k}-differential graded algebras. An object $\left(A, d_{A}\right)$ is the data of a graded module $A=\oplus_{n \in N} A_{n},\left(A_{0}\right.$ contains $\left.\boldsymbol{k}\right)$, a multiplication on A such that A_{n}, A_{p} is included in A_{n+p}, and a derivation d_{A} of degree -1 satisfying $d_{A}^{2}=0, d_{A}(a . b)=\left(d_{A} a\right) . b+(-1)^{|a|} a .\left(d_{A} b\right)$, where $|a|$ denotes the degree of $a \in A$.

We assume furthermore that $\left(A, d_{A}\right)$ is endowed with an involution ω, that is a \boldsymbol{k}-linear map of degree zero, commuting with $d_{A}, \omega^{2}=I d$, and satisfying

$$
\omega(a . b)=(-1)^{|a| \cdot|b|} \omega(b) \cdot \omega(a) .
$$

Following [8,13], we consider the bigraded Hochschild complex $\left(C_{p q}\right)_{p, q \geq 0}$

$$
C_{p q}=\oplus A_{i_{0}} \otimes \bar{A}_{i_{1}} \otimes \ldots \otimes A_{i_{p}}
$$

where $\bar{A}=A / \boldsymbol{k}$ and the sum ranges over the $\left(i_{0}, \ldots, i_{p}\right)$ such that $i_{0}+\cdots+i_{p}=q$.
We extend the definition of d_{A} to this bicomplex, and the definitions of b and B.
Denote $\mathscr{C}_{*}=\oplus_{n \geq 0} \mathscr{C}_{n}, \mathscr{C}_{n}=\oplus_{p+q=n} C_{p q}$.
We recall that $H H_{*}\left(A, d_{A}\right)=H_{*}\left(\mathscr{C}_{*}, b+d_{A}\right)$.
Denote $\mathscr{B}_{*}=\oplus_{n \in N} \mathscr{B}_{n}, \mathscr{B}_{n}=\mathscr{C}_{n} \oplus \mathscr{C}_{n-2} \oplus, \ldots$, and ${ }_{B} b$ its differential

$$
{ }_{B} b\left(c_{n}, c_{n-2}, \ldots\right)=\left(\left(b+d_{A}\right)\left(c_{n}\right)+B\left(c_{n-2}\right),\left(b+d_{A}\right)\left(c_{n-2}\right)+B\left(c_{n-4}\right), \ldots,\right)
$$

We recall that $H C_{*}\left(A, d_{A}\right)=H_{*}\left(\mathscr{B}_{*},{ }_{B} b\right)$
Consider the dihedral group \boldsymbol{D}_{p} of order $2 p$, generated by t and u with the relations $t^{p}=u^{2}=1, u . t . u=t^{-1}$.

If $\left(A, d_{A}\right)$ is endowed with an involution ω, then D_{p+1} acts on $C_{p q}$ by t and u as

$$
\begin{aligned}
& t\left(a_{0} \otimes \cdots \otimes a_{p}\right)=(-1)^{p+\left|a_{p}\right|\left(\left|a_{p-1}\right|+\cdots+\left|a_{1}\right|\right)}\left(a_{p} \otimes a_{0} \otimes \cdots \otimes a_{p-1}\right), \\
& u\left(a_{0} \otimes \cdots \otimes a_{p}\right)=(-1)^{p(p+1) / 2+\Phi(p)}\left(\omega\left(a_{0}\right) \otimes \omega\left(a_{p}\right) \otimes \cdots \otimes \omega\left(a_{1}\right)\right),
\end{aligned}
$$

where

$$
\Phi(p)=\left|a_{1}\right| \sum_{i>1}\left|a_{i}\right|+\left|a_{2}\right| \sum_{i>2}\left|a_{i}\right|+\cdots+\left|a_{p-1}\right|\left|a_{p}\right| .
$$

Lemma 1.1. $b u=u b, B u+u B=0, u d_{A}=d_{A} u$.
Proof. We check the two first relations as in [14], the third one is an easy calculation.
So, as in [14], we have a decomposition $\mathscr{C}_{*}=\mathscr{C}_{*}^{+} \oplus \mathscr{C}_{*}^{-}$into two subcomplexes where u acts as the identity on \mathscr{C}_{*}^{+}and acts as $-I d$ on \mathscr{C}_{*}^{-}.

Let $H H_{*}^{+}\left(A, d_{A}\right)=H_{*}\left(\mathscr{C}_{*}^{+}, b+d_{A}\right)$ and $H H_{*}^{-}\left(A, d_{A}\right)=H_{*}\left(\mathscr{C}_{*}^{-}, b+d_{A}\right)$, we have

$$
H H_{*}\left(A, d_{A}\right)=H H_{*}^{+}\left(A, d_{A}\right) \oplus H H_{*}^{-}\left(A, d_{A}\right)
$$

$H H_{*}^{+}$is called \mathbb{Z}_{2}-equivariant Hochschild homology and $H H_{*}$ is called skew $\mathbb{Z}_{2^{-}}$ equivariant Hochschild homology.
Now, we put

$$
\mathscr{B}_{n}^{+}=\mathscr{C}_{n}^{+} \oplus \mathscr{C}_{n-2}^{-} \oplus \mathscr{C}_{n-4}^{+} \oplus \cdots \quad \text { and } \quad \mathscr{B}_{n}^{-}=\mathscr{C}_{n}^{-} \oplus \mathscr{C}_{n-2}^{+} \oplus \mathscr{C}_{n-4}^{-} \oplus \cdots .
$$

Definition 1.2. $H_{*}\left(\mathscr{B}_{*}^{+},{ }_{B} b\right)$ is called the dihedral homology of $\left(A, d_{A}\right)$ and denoted $H D_{*}\left(A, d_{A}\right)$.
$H_{*}\left(\mathscr{B}_{*}^{-},{ }_{B} b\right)$ is called the skew dihedral homology of $\left(A, d_{A}\right)$ and denoted $H S D_{*}\left(A, d_{A}\right)$
We have $H C_{*}\left(A, d_{A}\right)=H D_{*}\left(A, d_{A}\right) \oplus H S D_{*}\left(A, d_{A}\right)$
Λs in [14], there are long exact sequences

$$
\begin{aligned}
& \cdots \rightarrow H H_{n}^{+}\left(A, d_{A}\right) \rightarrow H D_{n}\left(A, d_{A}\right) \rightarrow H S D_{n-2}\left(A, d_{A}\right) \rightarrow H H_{n-1}^{+}\left(A, d_{A}\right) \rightarrow \cdots \\
& \cdots \rightarrow H H_{n}^{-}\left(A, d_{A}\right) \rightarrow H S D_{n}\left(A, d_{A}\right) \rightarrow H D_{n-2}\left(A, d_{A}\right) \rightarrow H H_{n-1}^{-}\left(A, d_{A}\right) \rightarrow \cdots
\end{aligned}
$$

In the rest of the paper, we will work with commutative differential graded algebras. Such an algebra satisfies $a_{n} . a_{m}=(-1)^{m n} a_{m} . a_{n}$, for $a_{n} \in A_{n}, a_{m} \in A_{m}$. So, an involutive commutative differential graded algebra has an involution ω which is a morphism in the category of commutative differential graded algebras.

2. Models for \mathbb{Z}_{2}-equivariant Hochschild homology and dihedral homology

Let $\left(A, d_{A}\right)$ be a commutative differential graded algebra endowed with an involution ω. Theorem 1.3 of [10], stated for cochain algebras, remains valid since it relies on the fact that any $\mathbb{Z} / 2 \mathbb{Z}$-invariant subspace of a vector space has a $\mathbb{Z} / 2 \mathbb{Z}$-invariant complement. So the construction of Proposition 1.1 of [3] can be performed equivariantly and we have the following.

Theorem 2.1. Let $\left(A, d_{A}\right)$ be a commutative differential graded algebra endowed with an involution ω. Then there exists a free commutative differential graded algebra $(\Lambda V, \partial)$ and a morphism $\rho:(A V, \partial) \rightarrow\left(A, d_{A}\right)$ inducing an isomorphism in homology such that
(1) $V=\bigoplus_{n \in N} V_{n}$, on each V_{n}, there exists an involution ω, which induces a morphism of commutative differential graded algebras,
(2) $\rho \omega=\omega \rho$.

Such an algebra $(A V, \partial)$ is called an equivariant model of $\left(A, d_{A}\right)$.
Remark. Let A be an involutive commutative algebra of finite type, then A is isomorphic to $k\left[x_{1}, \ldots, x_{p}\right] / I$, where the involution ω of A is the image of ω^{\prime} on $\boldsymbol{k}\left[x_{1}, \ldots, x_{p}\right]$ satisfying $\omega^{\prime}\left(x_{i}\right)=\perp x_{i}$ for all i, and I contains $\omega^{\prime}(I)$. So we can construct an equivariant model of $A,(\Lambda V, \partial)$, with $V_{0}=\oplus_{1 \leq i \leq p} k x_{i}$ and $\operatorname{dim} V_{n}<\infty$, for all n.

Proposition III. 2.9 of [8] can be transposed in this context:
Proposition 2.2. Let $f:\left(A, d_{A}\right) \rightarrow\left(B, d_{B}\right)$ be an equivariant morphism of involutive commutative differential graded algebras over a field. Iff f_{*} is an isomorphism from $H_{*}\left(A, d_{A}\right)$ to $H_{*}\left(B, d_{B}\right)$, then f induces isomorphisms between \mathbb{Z}_{2}-equivariant (resp. skew $\mathbb{Z}_{2^{-}}$ equivariant) Hochschild homology and dihedral homology.

From now on, we will assume that \boldsymbol{k} is a field of characteristic zero, and using Proposition 2.2, we will work with the equivariant model ($\Lambda V, \partial$).

In the appendix of [12], we define the module of differential forms Ω^{1} of a commutative graded algebra (A, ∂), extending the classical definition, so that Ω^{1} is an (A, ∂)-differential module with a differential δ satisfying $d \partial+\delta d=0$.

If (A, ∂) is endowed with an involution ω, we define an involution still denoted ω on Ω^{1} satisfying $\omega d+d \omega=0, \omega \delta=\delta \omega$.

By definition, $\left(\Omega_{(A, \partial)}^{*}, \delta\right)$ is the (A, ∂)-commutative differential graded algebra on Ω^{1}. So the formula:

$$
\omega_{n}\left(a_{0} \wedge d a_{1} \wedge \cdots \wedge d a_{n}\right)=(-1)^{n} \omega\left(a_{0}\right) d \omega\left(a_{1}\right) \wedge \cdots \wedge d \omega\left(a_{n}\right)
$$

defines an involution ω on $\left(\Omega_{(A, \overparen{c})}^{*}, \delta\right)$ which is a morphism of commutative differential graded algebras satisfying $\omega d+d \omega=0$.

If $(A, \partial)=(\Lambda V, \partial)$, the algebra $\left(\Omega_{(\Lambda V, \partial)}^{*}\right.$, of differential forms has the form $(A V \otimes A \bar{V}, \delta)$ with $\bar{V}=d V$, and $\delta d+d \partial=0$.

Now, we recall the main result of [3] (Theorem 2.4).
Proposition 2.3 (Burghelea and Vigué-Poirrier [3]). The map

$$
\theta_{p, n-p}: C_{p, n-p}(\Lambda V, \partial) \rightarrow\left(\Omega_{(\Lambda V, \lambda)}^{p}\right)_{n}
$$

defined by

$$
\theta_{p}\left(a_{0} \otimes \cdots \otimes a_{p}\right)=\left[(-1)^{\varepsilon_{p}(a)}\right] / p!\cdot\left(a_{0} \wedge d a_{1} \wedge \cdots \wedge d a_{p}\right),
$$

where $a_{0} \in A V, a_{i} \in A V / k$ if $i \geq 1, \varepsilon_{p}(a)=\left|a_{1}\right|+\left|a_{3}\right|+\cdots$ satisfies
(1) $\theta_{0} b=0, \theta_{0} \partial=\delta_{0} \theta, \theta_{0} B=d_{0} \theta$;
(2) θ induces isomorphisms: $H H_{n}(\Lambda V, \partial) \cong H_{n}\left(\Omega^{*}, \delta\right)$ for all $n \geq 0$ and $H C_{n}(\Lambda V, \partial)$ $\cong H C_{n}\left(\Omega^{*}, \partial, \delta\right)$, where $H C_{*}\left(\Omega^{*}, \partial, \delta\right)$ is the total homology of the bicomplex

Lemma 2.4. The following diagram commutes

Proof. Left to the reader.
We have a decomposition $\Omega_{(A V, \gamma)}^{*}=\left(\Omega^{*}\right)^{+} \oplus\left(\Omega^{*}\right)^{-}$where $\left(\Omega^{*}\right)^{+}=\{x / \omega(x)=x\}$ and $\left(\Omega^{*}\right)^{-}=\{x / \omega(x)=-x\}$.

From Proposition 2.3 and Lemma 2.4, we have directly:
Theorem 2.5. We have explicit isomorphisms, induced by θ, for each $n \geq 0$.

$$
\begin{aligned}
& \quad H H_{n}^{+}(A) \cong H H_{n}^{+}(A V, \partial) \cong H_{n}\left(\left(\Omega^{*}\right)^{+}, \delta\right)=\bigoplus_{i} H_{n}^{(i)}\left(\left(\Omega^{*}\right)^{+}, \delta\right) \\
& \quad H D_{n}(A) \cong H D_{n}(\Lambda V, \partial) \cong H C_{n}\left(\left(\Omega^{*}\right)^{+}, \delta, d\right)=\bigoplus_{i} H C_{n}^{(i)}\left(\left(\Omega^{*}\right)^{+}, \delta, d\right) \\
& \text { here } \\
& H_{*}^{(i)}\left(\left(\Omega^{*}\right)^{+}, \delta\right)=H_{*}\left(\left(\Omega^{*}\right)^{+} \cap\left(\Omega^{i}, \delta\right)\right)
\end{aligned}
$$

where
$H C_{*}^{(i)}\left(\left(\Omega^{*}\right)^{+}, \delta, d\right)$ is the total homology of the bicomplex

Since $H_{n}\left(\Omega_{*}^{+}, d\right)=\left(\left(\Omega_{n}^{+} \cap \operatorname{Ker} d\right) / d\left(\Omega_{n}^{-}\right)\right.$and

$$
H_{n}\left(\Omega_{*}^{-}, d\right)=\left(\left(\Omega_{n}^{-} \cap \operatorname{Ker} d\right) / d\left(\left(\Omega_{n}^{+}\right) \text {for all } n>0\right.\right.
$$

we have a similar result to Theorem 2.1 of [3]

Theorem 2.6. The map $\phi: \Omega_{n}^{+} \oplus \Omega_{n-2}^{-} \oplus \cdots \rightarrow\left(\Omega_{n+1}^{-} \cap d\left(\Omega_{n}^{+}\right), \delta\right)$ defined by $\phi\left(c_{n}, c_{n-2} \ldots\right)=(-1)^{n} d c_{n}$ for $c_{n-2 i} \in \Omega_{n-2 i}$, is a morphism of complexes and induces an isomorphism between $H \bar{D}_{*}(\Lambda V, \partial)=H D_{*}(\Lambda V, \partial) / H D_{*}(\boldsymbol{k})$ and $H_{*+1}\left(\Omega_{*}^{-} \cap d\left(\Omega_{*}^{+}\right), \delta\right)$. Analogously, we have an isomorphism between IIS $\bar{D}_{*}(\Lambda V, \partial)=I I S D_{*}(\Lambda V, \partial) / I I S D_{*}(\boldsymbol{k})$ and $H_{*+1}\left(\Omega_{*}^{+} \cap d\left(\Omega_{*}^{-}\right), \delta\right)$.

The famous Hochschild-Kostant-Rosenberg theorem implies that if A is smooth, then the \mathbb{Z}_{2}-equivariant Hochschild homology groups $H H_{n}^{+}(A)$ are zero for n sufficiently large.

For graded algebras, we can prove a converse of this result, using the theory developed in the present paragraph. This is, in fact, the proof of a refinement of a conjecture by Rodicio [16].

Theorem 2.7. Let A be a graded algebra over a characteristic zero field, and ω an involution on A. If there exists three integers i, j, k such that $i-j, j-k$ and $i-k$ are not divisible by 4 , and

$$
H H_{i}^{+}(A)=H H_{j}^{+}(A)=H H_{k}^{+}(A)=0
$$

then A is a polynomial algebra.

Proof. The proof relies on Theorem 2.6 and the existence of a minimal model for a graded algebra. Then, we proceed as in the proofs of theorems 1 and 2 of [18]. If A is not a polynomial algebra, we write $A=\boldsymbol{k}\left[x_{1}, \ldots, x_{m}\right] / I$, with $I \neq 0$, and we consider the elements $Z_{m+2 n}=\left(d x_{1} \ldots d x_{m}\right)(d y)^{n}$, and their images by the involution ω. Since A is graded, we have short exact sequences:

$$
\begin{aligned}
& 0 \rightarrow H S \bar{D}_{n-1}\left(A, d_{A}\right) \rightarrow H H_{n}^{+}\left(A, d_{A}\right) \rightarrow H \bar{D}_{n}\left(A, d_{A}\right) \rightarrow 0 \\
& 0 \rightarrow H \bar{D}_{n-1}\left(A, d_{A}\right) \rightarrow H H_{n}^{-}\left(A, d_{A}\right) \rightarrow H S \bar{D}_{n}\left(A, d_{A}\right) \rightarrow 0
\end{aligned}
$$

The elements $Z_{m+2 n}$ define nonzero classes in $H \bar{D}_{m+2 n-1}$ or $H S \bar{D}_{m+2 n-1}$, depending on the actions of ω. This allows us to determine when the groups $H H_{n}^{+}(A)$ are not zero.

Remark. In [18], it is proven that if A is not a polynomial algebra, then $H C_{n}(A) \neq 0$ for infinitely many n. Here we cannot prove the same result for dihedral homology or skew dihedral homology, but instead, it is valid for \mathbb{Z}_{2}-equivariant Hochschild homology.

3. Localization of \mathbb{Z}_{2}-equivariant Hochschild homology. Applications

Let A be a commutative algebra. One of the most important properties of Hochschild homology, specially for geometrical applications, is that it is well-behaved with respect to localization. Explicitly, if S is a multiplicatively closed subset of A, and $A_{s}=S^{-1} A$, then by a result of Brylinski [2]

$$
H H_{*}\left(A_{S}\right)=H H_{*}(A) \otimes_{A} A_{S}
$$

If A is provided with an involution ω, and A^{+}is the subalgebra of the elements of A fixed by ω, then $H H_{n}^{\dagger}(A)$ is no more an A-algebra but an A^{+}-algebra.

Let S be a multiplicatively closed subset of A, stable by the involution (i.e. $\omega(S)$ is included in S), and let $S^{+}=\{s \in S / \omega(s)=s\}$.

Then $1 \in S^{+}$, and S^{+}is also a multiplicatively closed subset of A.
If $a, a^{\prime} \in A, s, s^{\prime} \in S$, then $a / s=a^{\prime} / s^{\prime}$ in A_{S} if and only if $\exists t \in S$ such that $t .\left(a s^{\prime}-a^{\prime} s^{\prime}\right)=0$. In this case, $\omega(a) / \omega(s)=\omega\left(a^{\prime}\right) / \omega\left(s^{\prime}\right)$ in A_{S}.

So, the formula $\omega(a / s)=\omega(a) / \omega(s)$ makes sense and defines an involution on A_{S}.
Lemma 3.1. The inclusion $i: A_{S_{+}} \rightarrow A_{S} ; i(a / s)=a / s$ s an isomorphism of algebras, such that $\omega i=i \omega$.

Proof. It is clear that i is a morphism of algebras which is injective.
It is also surjective because if $a / s \in A_{\boldsymbol{S}}$, then $a / s=\mathrm{a} . \omega(s) / s . \omega(s)$ in A_{S}, and $s . \omega(s) \in S^{+}$.

As a consequence of this lemma, from now on we can suppose $S=S^{+}$.
Consider now an A-bimodule M, which is A^{+}-symmetric (i.e. $r m=m r$, for $r \in A^{+}, m \in M$), provided with an involution ω_{M} compatible with ω.

More explicitly, ω_{M} is k-linear, $\omega_{M}^{2}=i d_{M}$, and if $a, b \in A, m \in M$, then $\omega_{M}(a . m . b)=\omega(b) \cdot \omega_{M}(m) \cdot \omega(a)$. We denote by $M^{+}=\left\{m \in M / \omega_{M}(m)=m\right\}$.

As in the previous sections, the Hochschild complex $C_{*}(A, M)$ can be decomposed into $C_{*}^{+}(A, M)$ and $C_{*}^{-}(A, M)$, whose homologies are, respectively, $H_{*}^{+}(A, M)$ and $H_{*}^{-}(A, M)[14]$.
$H_{*}(A, M),\left(\right.$ resp. $\left.H_{*}^{+}(A, M)\right)$ has a natural structurc of symmetric A-bimodule (resp. A^{+}-bimodule).

If S is a multiplicatively closed subset of A, suppose $S=S^{+}$, and define $M_{S}=A_{S}^{+} \otimes_{A^{+}} M \otimes_{A^{+}} A_{S}^{+}$.

Remark. $\left(M^{+}\right)_{S} \cong\left(M_{S}\right)^{+}$as A_{S}^{+}-bimodule.
Theorem 3.2. In the above conditions,

$$
\left.H_{*}^{+}\left(A_{S}, M_{S}\right) \cong\left[H_{*}^{+}(A, M)\right]_{S} \quad \text { (and analogously for } H^{-}\right)
$$

Proof. First observe that the functor $X \rightarrow X^{+}$from the category of symmetric A bimodules to the category of A^{+}-bimodules is well-defined and exact.

Also, let $\eta_{0}:\left[H_{0}(A, M)\right]_{S} \rightarrow H_{0}\left(A_{S}, M_{S}\right)$ be the natural isomorphism induced by $\bar{f}: M /[A, M] \rightarrow M_{S} /\left[A_{S}, M_{S}\right] ; \bar{f}(\bar{m})=c 1(1 \otimes m \otimes 1)$.

By a theorem of Grothendieck [9], as η_{0} is an isomorphism and we also have natural functors $\eta_{n}:\left[H_{n}(A, M)\right]_{s} \rightarrow H_{n}\left(A_{S}, M_{S}\right)$ for $n \geq 0$, then $\left[H_{*}(A, M)\right]_{S}$ is isomorphic to $H_{*}\left(A_{S}, M_{S}\right)$.

Also, η_{0} commutes with the involution. So, $\left[H_{*}^{+}(A, M)\right]_{s} \cong\left[\left(H_{*}(A, M)\right)^{+}\right]_{s}$. By the previous remark, this last term is identical with $\left(\left[H_{*}(A, M)\right]_{s}\right)^{+}$, and by the result of Brylinski, this equals $\left[H_{*}\left(A_{S}, M_{S}\right)\right]^{+}=H_{*}^{+}\left(A_{S}, M_{S}\right)$.

Now, we apply Theorem 3.2 to the characterization of smoothness in terms of the nullity of some \mathbb{Z}_{2}-equivariant Hochschild homology groups.
In [16], the author conjectures:
Let \boldsymbol{k} be a field of characteristic zero and let A be a \boldsymbol{k}-algebra of finite type. If $H H_{n}(A)=0$ for n sufficiently large, then A is a smooth \boldsymbol{k}-algebra.

In $[4,1]$, the authors prove the conjecture, under the less restrictive assumption that there exists two Hochschild homology groups $H H_{2 i}$ and $H H_{2 j+1}$ which vanish.

Here, we give a similar result for involutive commutative algebras.

Theorem 3.3. Let $A=\mathbb{C}\left[x_{1}, \ldots, x_{m}\right] / I$ be a reduced commutative algebra of finite type. We assume that A is the coordinate ring of an algebraic subset V containing the origin and symmetric by the origin (so, the involution $\omega\left(x_{i}\right)=-x_{i}$ for all i, induces an involution on A).

Then, if V is not smooth at the origin, there exists an integer p such that $H_{i}^{+}(A) \neq 0$ for all $i<p$, and $H H_{p+4 n}^{+}(A) \neq 0$ for all $n \in N$.

Proof. We recall that an algebraic subset V of the affine space $\boldsymbol{A}_{\boldsymbol{m}}(\mathbb{C})$ is defined by the data of a family of polynomials $\left(P_{i}\right)_{i \in I}, P_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{m}\right]$ and

$$
V=\left\{\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{C}^{m} / P_{i}\left(a_{1}, \ldots, a_{m}\right)=0, \text { for all } i\right\}
$$

If we denote by $I(V)$ the ideal generated by the polynomials Q such that $Q\left(a_{1}, \ldots, a_{m}\right)=0$, for all $\left(a_{1}, \ldots, a_{m}\right) \in V$, then $I(V)$ is equal to the radical of the ideal generated by the family $\left(P_{i}\right)_{i \in I}$. Then $A=\mathbb{C}\left[x_{1}, \ldots, x_{m}\right] / I(V)$ is called the coordinate ring of V. From the Nullstellensatz theorem, we have a one-to-one correspondence between reduced commutative algebras of finite type and coordinate rings of algebraic subsets.

Now consider an algebraic set V containing the origin O. Let σ be the central symmetry of center O in $\boldsymbol{A}_{\boldsymbol{m}}(\mathbb{C})$, we assume that V contains $\sigma(V)$. We denote by ω the algebra morphism on $\mathbb{C}\left[x_{1}, \ldots, x_{m}\right]$ defined by $\omega\left(x_{i}\right)=-x_{i}$ for all i. If $\sigma(V)$ is a subset of V we can find generators P_{1}, \ldots, P_{r} of $I(V)$ such that $\omega\left(P_{j}\right)= \pm P_{j}$, for all $j \in[1, \ldots, r]$. In the following, $A=\mathbb{C}\left[x_{1}, \ldots, x_{m}\right] / I(V)$ will be endowed with the image of this involution ω. Let $\mathfrak{M}^{\prime}=\left(x_{1}, \ldots, x_{m}\right)$ and $\mathfrak{M}=\mathfrak{M}^{\prime} / I$. From Theorem 3.2, we have $H H_{*}^{+}\left(A_{\mathfrak{M}}\right) \cong H H_{*}^{+}(A) \otimes_{A^{+}}\left(A^{+}\right)_{S^{+}}$, with $S^{+}=\left\{s \in \mathbb{C}\left[x_{i}\right]-\mathfrak{M} / \omega(s)=s\right\}$.

So we work with the local ring $A_{\mathfrak{M}}$ endowed with the induced involution. Since $\omega\left(x_{i}\right)=-x_{i}$ for all i, the ideal \mathfrak{M}^{\prime} has a minimal set of generators on which ω operates as -Id. A classical argument [I], shows that we can write $A_{\mathfrak{M}}=A_{0} / J$ with A_{0} a local regular ring of maximal ideal \mathfrak{R}, J is contained in \mathfrak{M}^{2} and A_{0} has an involution ω that operates as $-I d$ on a minimal set of generators $\left(f_{1}, \ldots, f_{p}\right)$ of \mathfrak{N}. Furthermore, we have $A_{0} / \mathfrak{N} \cong \mathbb{C}$.

Tate's construction [17], allows us to say that there exists a minimal commutative graded differential algebra $\left(A_{0} \otimes \Lambda V, \partial\right), V=\oplus_{n \geq 1} V_{n}$, and a map from $\left(A_{0} \otimes \Lambda V, \partial\right)$ onto A_{0} / J which induces an isomorphism in homology.

On the other hand, since A is involutive, we can build this model such that each V_{n} is endowed with an involution which is a morphism of commutative differential graded algebras, extending the involution of A_{0}.

In $[7,19]$, it is proved that the Hochschild homology of A_{0} / J is isomorphic to the homology of $\left(\Omega_{A_{0}}^{*} \otimes \Omega_{d V}^{*}, \delta\right)$ with $\delta d+d \partial=0$.

A similar argument to those of Section 2 shows that
$H H_{*}^{+}\left(A_{\mathfrak{M}}\right)=H_{*}\left(\left(\Omega_{A_{0}}^{*} \otimes \Omega_{A V}^{*}\right)^{+}, \delta\right)$
Then the proof is the same as in [1]; if A_{N} is not local regular, then $J \neq 0$, so we have $V_{1} \neq 0$, we can find an element $y \in V_{1}$ such that $\omega(y)= \pm y$. Since $\omega\left(f_{i}\right)=-f_{i}$ for all i, we have $\omega\left(d f_{i}\right)=d f_{i}$.

For $n \in N$, we put $Z_{4 n+p}=\left(d f_{1} \ldots d f_{p}\right)(d y)^{2 n}$, then $\omega\left(Z_{4 n+p}\right)=Z_{4 n+p}$, so $Z_{4 n+p} \in\left(\Omega_{A_{0}}^{*} \otimes \Omega_{A V}^{*}\right)^{+}$.

We conclude as in [1].

Acknowledgements

We wish to thank Matias Graña who contributed to the proof of Theorem 3.2.

References

[1] L. Avramov and M. Vigué-Poirrier, Hochschild homology criteria for smoothness, Internat. Math. Notices (Appendix to Duke Math. J.) 65 (1992) 17-25.
[2] J.-L. Brylinski, Central localization in Hochschild homology, J. Pure Appl. Algebra 57 (1989) 1-4.
[3] D. Burghelea and M. Vigué-Poirrier, Cyclic homology of commutative algebras, Lecture Notes in Mathematics, Vol. 1318 (1988) 51-72.
[4] A. Campillo, J. Guccione, J.J. Guccione, M.J. Redondo, A. Solotar and O. Villamayor, A. Hochschild homology criterium for the smoothness of an algebra, Comment. Math. Helv. 69 (1994) 163-168.
[5] A. Connes, Non commutative differential geometry, Publ. Math. IHES 62 (1985) 41-144.
[6] G. Cortinas, L-theory and dihedral homology II, Topology Appl. 51 (1993) 53-69.
[7] G. Cortinas, J. Guccione and J.J. Guccione, Decomposition of the Hochschild and cyclic homology of commutative differential graded algebras, J. Pure Appl. Algebra to appear.
[8] T. Goodwillie, Cyclic homology, derivations and the free loop space, Topology 24 (1985) 187-215.
[9] A. Grothendieck, Sur quelques points d'algèbre homologique, Tçhoku Math. J. 9 (1957) 119221.
[10] K. Grove, S. Halperin and M. Vigué-Poirrier, The rational homotopy theory of certain path spaces with application to geodesics, Acta Math 140 (1978) 289-307.
[11] G. Hochschild, B. Kostant and A. Rosenberg, Differential forms on regular affine algebras, Trans. AMS 102 (1962) 383-405.
[12] C. Kassel and M. Vigué-Poirrier, Homologie des quotients primitifs de l'algèbre enveloppante de sl(2), Math. Ann. 294 (1992) 483-502.
[13] R. Krasaukas and Y. Solov'ev, Rational hermitian K-theory and dihedral homology, Math. USSR, Izvestiya 33(2) (1989) 261-293.
[14] J.-L. Loday, Homologie diedrale et quaternionique, Adv. Math. 66 (1987) 119-148.
[15] J.-M. Lodder, Dihedral homology and hermitian K-theory, New Mexico State University, Preprint.
[16] A. Kodicio, Smooth algebras and vanishing of Hochschild homology, Comment. Math. Helv. 65 (1990) 474-477.
[17] J. Tate, On the homology of Noetherian rings and of local rings, III. J. Math. 1 (1957) 14-27.
[18] M. Vigué-Puirrieı, Critère de nullité pour l'honnolugie des algèbres graduées, C.R. Acad, Sci. Par is 317 (1993) 647-649.
[19] M. Vigué-Poirrier, Homologie et K-théorie des algèbres commutatives. Caractérisation des intersections complètes, J. Algebra 173 (1995) 679-695.

[^0]: * Corresponding author.

