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Abstract

Let A be an associative k-algebra with involution, where &k is a commutative ring of
characteristic not equal to two. Then the dihedral groups act on the Hochschild complex
and, following Loday, a new homological theory, called dihedral homology, can be defined
generalizing the notion of cyclic homology defined by Connes. Here we give a model
to compute dihedral homology of a commutative algebra over a characteristic zero field.
As, for an involutive algebra, we have a decomposition of Hochschild homology into
a direct sum of two k-modules: Z,-equivariant and skew Z,-equivariant Hochschild
homologies, we give smoothness criteria in terms of vanishing of some Z,-equivariant
Hochschild homology groups.

1991 Math. Subj. Class.: 14B05, 14F40, 16E40, 18G60

0. Introduction

Let & be a unital commutative ring, where 2 is invertible, and let 4 be an associative
k-algebra with involution. We recall, [5, 14], that the definition of cyclic homology
uses explicitly the action of the cyclic group Z/nZ over the Hochschild complex.

If A is involutive, an action of the dihedral groups D, on the Hochschild complex
can be defined as in [14], and it gives two new homological theories called dihedral
homology and skew dihedral homology, see also [6] and [15].

The Hochschild homology of an involutive algebra decomposes into two parts
(Z,-equivariant and skew Z,-equivariant Hochschild homologies), and the Connes’
long exact sequence splits into two long exact sequences relating dihedral homology,
skew dihedral homology, Z,-equivariant and skew Z,-equivariant Hochschild
homologies.
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In this paper we use the techniques of models developed in [3,7] to study
Z,-equivariant Hochschild homology and dihedral homology of a commutative
algebra over a characteristic zero field. Most of the results obtained in the above
papers can be generalized to dihedral homology. As a consequence, we give a suffi-
cient (and necessary) condition for an involutive graded algebra to be a polynomial
algebra, in terms of vanishing of some dihedral homology groups, or Z,-equivariant
Hochschild homology groups. Finally, we show that Z,-equivariant Hochschild
homology behaves well under localization. We use this result to give a positive answer
to a refinement of a conjecture by Rodicio [16]. We prove:

Theorem. Let A = C[x, ..., x,]|/I be the coordinate ring of an algebraic variety of the
affine space A,(C), containing the origin and invariant under symmetry by the origin. We
endow A with the symmetry induced by w(x;) = — x;, for all i. If A is not smooth at the
origin, then there exists an integer p >0 such that HH; (A) # 0 for all i <p and
HH;,4,(A) #0 for all ne N (where HH™ denotes the Zj-equivariant Hochschild
homology).

1. Dihedral homology of differential graded algebras

Let k be a commutative ring with unit where 2 is invertible. We work in the category
k-DGA of k-differential graded algebras. An object (A4,d,) is the data
of a graded module 4 = @5 4,,, (Ao contains k), a multiplication on A such that
A,.A, is included in A,;, and a derivation d, of degree —1 satisfying
di = 0,d(a.b) = (dya).b + (—1)“la.(d,b), where |a| denotes the degree of a € A.

We assume furthermore that (A4,d,) is endowed with an involution w, that is
a k-linear map of degree zero, commuting with d,, w? = Id, and satisfying

w(a.b) = (— )" o(b).w(a).
Following [8,13], we consider the bigraded Hochschild complex (Cpg)p 450
Cpq = @ Aio ® gi1® ® gip’

where A = A/k and the sum ranges over the (i, ... ,i,) such that iy + -+ +i, =gq.
We extend the definition of d, to this bicomplex, and the definitions of b and B.
Denote €, = @, 0% 6 = @ p+gq=nCpq.
We recall that HH (A, d4) = H (€. b + dy).
Denote B, = @ penBn, Bn =€, D €p—2 @, ..., and pb its differential

Bb(Cns Camzs o ) = (b + di)(ca) + B(ca—2): (b + dg)(cn—2) + BlCa—s), .. )

We recall that HC (A4,d,) = H (%, gb)
Consider the dihedral group D, of order 2p, generated by ¢t and u with the relations
tP=ut=1,utu=1t"1
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If (4, d,) is endowed with an involution w, then D, acts on C,, by t and u as

t(a0® e ® a,,) =(— 1)p+ lapl(fap—al + - +Ia.l)(ap Rar® - ® ap_l)’
u(@o® -+ ® a,) = (— )PP+ 2+ ¥ ((ag) ® w(a,) @ - ® wlay)),

where

®(p) = |l Y lail + laz| 3 lail + -+ +lap-1llayl.

i>1 i(>2
Lemma 1.1. bu = ub, Bu + uB =0, ud, = d,u.

Proof. We check the two first relations as in [ 141, the third one is an easy calculation.
So, as in [14], we have a decomposition €, =%, ® €, into two subcomplexes
where u acts as the identity on € and acts as —Id on % .
Let HH}(A,d,) = H, (64 .b + d,) and HH, (A, d,) = H,(¥¢,.,b + d,), we have

HH,(A,d,)=HH;(A,d) ® HH, (A,d ).

HH} is called Z,-equivariant Hochschild homology and HH, is called skew Z,-
equivariant Hochschild homology.
Now, we put

BY =€ D, ,DE s D and B, =F, OC 1 DC-a® - .

Definition 1.2. H, (%], gb) is called the dihedral homology of (A,d,) and denoted
HD, (A,d ).
H,(#,, gb) is called the skew dihedral homology of (4,d,) and denoted HSD (A4, d )
We have HC,(A,d,) = HD,(A,d4) ® HSD(A,d )
As in [14], there are long exact sequences

. » HH;(A,d,) > HD,(4,d,) > HSD,_,(A,d,) - HH, (A, d,) — -
. —’HH,._(A,dA) — HSD,(A,dy) — HDn~2(AadA) — HH,_ (A, dy) - -

In the rest of the paper, we will work with commutative differential graded algebras.
Such an algebra satisfies a,.a, = (— 1)™a,.qa,, for a, € A,, a,, € A,,. So, an involutive
commutative differential graded algebra has an involution @ which is a morphism in
the category of commutative differential graded algebras.

2. Models for Z,-equivariant Hochschild homology and dihedral homology

Let (A4,d,) be a commutative differential graded algebra endowed with an involu-
tion w. Theorem 1.3 of [ 10], stated for cochain algebras, remains valid since it relies on
the fact that any Z/2Z-invariant subspace of a vector space has a Z/2Z-invariant
complement. So the construction of Proposition 1.1 of [3] can be performed
equivariantly and we have the following.
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Theorem 2.1. Let (A4,d ) be a commutative differential graded algebra endowed with an
involution . Then there exists a free commutative differential graded algebra (AV,0)
and a morphism p:(AV,08) — (4,d ) inducing an isomorphism in homology such that
nyv= @;.EN V,, on each V,, there exists an involution w, which induces a morphism
of commutative differential graded algebras,
(2) pw = wp.

Such an algebra (AV, d) is called an equivariant model of (A,d ,).

Remark. Let 4 be an involutive commutative algebra of finite type, then A4 is
isomorphic to k[xy, ..., x,]1/I, where the involution w of A4 is the image of w’ on
k[xy, ...,x,] satisfying w'(x;) = +x; for all i, and I contains w'(I). So we can
construct an equivariant model of A, (AV,d), with V, = E}—) 1 <i <p kx;and dim V, < oo,
for all n.

Proposition II1. 2.9 of [8] can be transposed in this context:

Proposition 2.2. Let f:(A,d,) — (B,dg) be an equivariant morphism of involutive com-
mutative differential graded algebras over a field. Iff, is an isomorphism from H (A, d 4)
to H,(B,dy), then f induces isomorphisms between Z,-equivariant (resp. skew Z,-
equivariant) Hochschild homology and dihedral homology.

From now on, we will assume that & is a field of characteristic zero, and using
Proposition 2.2, we will work with the equivariant model (AV, d).

In the appendix of [12], we define the module of differential forms Q* of a com-
mutative graded algebra (A4, d), extending the classical definition, so that Q' is an
(A, 0)-differential module with a differential ¢ satisfying dd + dd = 0.

If (4, 0) is endowed with an involution w, we define an involution still denoted w on
Q! satisfying wd + dw = 0, wd = do.

By definition, (%, ;), ) is the (4, 8)-commutative differential graded algebra on Q*.
So the formula:

w,(agrday n - Aday,) = (— 1) o(ag)dw(a)) A - Adwlay,)
defines an involution w on (2, ), d) which is a morphism of commutative differential
graded algebras satisfying wd + dw = 0.
If (4,0)=(AV,d), the algebra (Q¢y ,, of differential forms has the form
(AV® AV,6) with ¥V = dV, and 6d + dd = 0.
Now, we recall the main result of [3] (Theorem 2.4).

Proposition 2.3 (Burghelea and Vigué-Poirrier [3]). The map

Hp.n—p: Cp.n—p(AV, a) - (Q(pAV,ﬁ))n
defined by
0,(a0® - ®ay) = [(— 1)"@1/p!"(ag Aday A - Aday),
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where age AV, a; e AV/k if i > 1, g,(a) = |as| + las| + --- satisfies

(1) 6ob = 0,040 = 808, 0B = dob;
(2) 8 induces isomorphisms: HH,(AV,0) = H,(Q*,0) for all n > 0 and HC,(AV,?)
~ HC,(Q2*,9,8), where HC,(Q*,0,0) is the total homology of the bicomplex

l l

d

D (Q*)n (‘_‘_(Q*)n~1 —

(sl l&

d

C e (@) —— Q)2 ——

l l

Lemma 2.4. The following diagram commutes

0
CplAV,0) —— Qw.z)

| |

CaV,8) —— @

v,y
P

Proof. Left to the reader.

We have a decomposition Q& ;) = (2*)"@(Q*)” where (2*)" = {x/w(x) = x}
and (Q*)” = {x/w(x) = —x}.
From Proposition 2.3 and Lemma 2.4, we have directly:

Theorem 2.5. We have explicit isomorphisms, induced by 6, for each n > 0.
HH; () = HH, (4V,) = H,(@*)",6) = D:H, (2*)",9)

HD.(A) = HD,(AV,d) = HC,(Q*)*,8,d) = P HCY(Q*)*,4,d),
wherg
HY(Q*)*,8) = H(Q%)" n(Q',8))

HCf,?((Q*)*,é,d) is the total homology of the bicomplex

| l

i d

DT @) —

| d s

Ce—— (@) (2T)T —

l l

Ce— (@
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Since H,(Q,,d) = (2, nKerd)/d(Q2, ) and
H,(Q5,d) = (@] nKerd)/d(Q}) foralln> 0,

we have a similar result to Theorem 2.1 of [3]

Theorem 2.6. The map ¢: 2, ®Q, >, ® - = (2,,1nd(Q7),8) defined by
O(CpyCaesz ... ) = (— 1)"dc, for c,_3; € Q, - 2;, is a morphism of complexes and induces an
isomorphism between HD,(AV,3) = HD,(AV,3)/HD,(k) and H, . (Q,nd(Q]),9).
Analogously, we have an isomorphism between HSD ,(AV,3) = HSD, (AV,3)/HSD, (k)
and H, , (2] nd(2),9).

The famous Hochschild-Kostant—Rosenberg theorem implies that if 4 is smooth,
then the Z,-equivariant Hochschild homology groups HH,' (A4) are zero for n suffi-
ciently large.

For graded algebras, we can prove a converse of this result, using the theory
developed in the present paragraph. This is, in fact, the proof of a refinement of
a conjecture by Rodicio [16].

Theorem 2.7. Let A be a graded algebra over a characteristic zero field, and w an
involution on A. If there exists three integers i, j, k such that i — j,j — k and i — k are not
divisible by 4, and

HH} (4) = HH] (A) = HH; (4) =0

then A is a polynomial algebra.

Proof. The proof relies on Theorem 2.6 and the existence of a minimal model for
a graded algebra. Then, we proceed as in the proofs of theorems 1 and 2 of [18]. If A is
not a polynomial algebra, we write 4 = k[x;, ..., x,]/I, with I # 0, and we consider
the elements Z,,, 5, = (dx, ... dx,,)(dy)", and their images by the involution w. Since
A is graded, we have short exact sequences:

0~ HSD,_(A4,d,) > HH, (4,d,) > HD,(4,d4) -0
0- HD,-(A,ds) > HH, (A,dy) > HSD,(A,d,) -0

The elements Z,, « ,, define nonzero classes in HD,, 4 3,1 ot HSD,, | 5, 1, depending
on the actions of w. This allows us to determine when the groups HH, (4) are not
Zer0.

Remark. In [18], it is proven that if A is not a polynomial algebra, then HC,(4) # 0
for infinitely many n. Here we cannot prove the same result for dihedral homology or
skew dihedral homology, but instead, it is valid for Z,-equivariant Hochschild
homology.
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3. Localization of Z,-equivariant Hochschild homology. Applications

Let A be a commutative algebra. One of the most important properties of Hoch-
schild homology, specially for geometrical applications, is that it is well-behaved with
respect to localization. Explicitly, if S is a multiplicatively closed subset of 4, and
As = S7'A, then by a result of Brylinski [2]

HH (As) = HH (A)®1A4s

If A is provided with an involution w, and A™ is the subalgebra of the elements of
A fixed by w, then HH [ (A) is no more an A-algebra but an 4™ -algebra.

Let S be a multiplicatively closed subset of 4, stable by the involution (i.e. »(S) is
included in S), and let S* = {s e S/w(s) = s}.

Then 1 eS*, and S™ is also a multiplicatively closed subset of A.

If a,adeA,ss €S, then a/s=d/s in Ag if and only if 3teS such that
t.(as’ — a's") = 0. In this case, w(a)/w(s) = w(d')/w(s') in As.

So, the formula w(a/s) = w(a)/w(s) makes sense and defines an involution on Ag.

Lemma 3.1. The inclusioni:As. — Ag; i(a/s) = a/s is an isomorphism of algebras, such
that wi = iw.

Proof. It is clear that i is a morphism of algebras which is injective.
1t 1s also surjective because if a/s € Ag, then a/s = a.w(s)/s.w(s) in Ag, and s.o(s)eS™.

As a consequence of this lemma, from now on we can suppose S = S*.

Consider now an A-bimodule M, which is A" -symmetric (ie. rm = mr, for
reA*,meM), provided with an involution w,, compatible with w.

More explicitly, @), is k-linear, w3 =idy, and if abeA,meM, then
wy(a.m.b) = w(b)- wr(m) w(a). We denote by M™ = {m € M/wy(m) = m}.

As in the previous sections, the Hochschild complex C,(4, M) can be decomposed
into C, (4, M) and C, (A, M), whose homologies are, respectively, H (4, M) and
H, (A, M) [14].

H, (A, M), (resp. H, (A, M)) has a natural structure of symmetric A-bimodule (resp.
A*-bimodule).

If S is a multiplicatively closed subset of A, suppose S=S*, and define
Ms= A5 @4 M® 4 Ay .

Remark. (M *)s = (Mg)* as A4 -bimodule.

Theorem 3.2. In the above conditions,
H]}(As,Mg) = [H} (A, M)]s (and analogously for H™)

Proof. First observe that the functor X — X from the category of symmetric A-
bimodules to the category of A™-bimodules is well-defined and exact.
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Also, let no:[Ho(A,M)]s — Ho(Ag, Mg) be the natural isomorphism induced by
F:M/[4,M] - Ms/[As, Ms]); f(7) = c1(1@m®1).

By a theorem of Grothendieck [9], as 5o is an isomorphism and we also have
natural functors #,,: [H,(A, M)]s — H,(As, Ms)for n > 0, then [H (A4, M)]s is isomor-
phic to H,(Ag, M5).

Also, 7o commutes with the involution. So, [H ; (4, M)]s = [(H (A4, M))* ]s. By the
previous remark, this last term is identical with ([H, (4, M)]s)*, and by the result of
Brylinski, this equals [H, (45, Ms)]* = H; (As, M).

Now, we apply Theorem 3.2 to the characterization of smoothness in terms of the
nullity of some Z,-equivariant Hochschild homology groups.
In [16], the author conjectures:

Let k be a field of characteristic zero and let A be a k-algebra of finite type. If
HH,(A) = 0 for n sufficiently large, then A is a smooth k-algebra.

In [4, 1], the authors prove the conjecture, under the less restrictive assumption that
there exists two Hochschild homology groups HH,; and HH,;,, which vanish.
Here, we give a similar result for involutive commutative algebras.

Theorem 3.3. Let A = C[xy, ..., xn]/I be a reduced commutative algebra of finite type.
W e assume that A is the coordinate ring of an algebraic subset V containing the origin
and symmetric by the origin (so, the involution w(x;) = —x; for all i, induces an
involution on A).

Then, if V is not smooth at the origin, there exists an integer p such that HH;" (4) # 0
for all i < p, and HH ;. 4,(A) # 0 for allneN.

Proof. We recall that an algebraic subset V of the affine space A,,(C) is defined by the
data of a family of polynomials (P;);.;, P; € C[xy, ... ,x,] and

V ={(ay, ...,a,)eC™/Py(a,, ... ,a,) =0, for all i}.

If we denote by I(V) the ideal generated by the polynomials @ such that
Q(ay, ... ,an)=0,forall (ay, ..., a,) eV, then I(V)is equal to the radical of the ideal
generated by the family (P;);.;. Then A = C[xy, ..., x,1/I(V)is called the coordinate
ring of V. From the Nullstellensatz theorem, we have a one-to-one correspondence
between reduced commoutative algebras of finite type and coordinate rings of algebraic
subsets.

Now consider an algebraic set V' containing the origin O. Let ¢ be the central
symmetry of center O in 4,(C), we assume that V' contains a(V'). We denote by w the
algebra morphism on C[xy,...,x,] defined by w(x;) = —x; for all i. If a(V) is
a subset of V we can find generators Py, ..., P, of I(V) such that w(P;) = + P;, for all
jel[l,...,r]. In the following, A = C[x,, ... ,x,]/I(V) will be endowed with the
image of this involution w. Let M’ = (x4, ... , X,,) and I = /1. From Theorem 3.2,
we have HH; (Ag) =~ HH; (4) ®4+(A")s+, with S* = {se C[x;] — M/w(s) = s}.
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So we work with the local ring Ay endowed with the induced involution. Since
w(x;) = — x; for all i, the ideal 9N has a minimal set of generators on which w operates
as -Id. A classical argument [I], shows that we can write Ay = Ao/J with 4, a local
regular ring of maximal ideal R, J is contained in :? and A, has an involution w that
operates as —Id on a minimal set of generators (fi, ..., f,) of 9. Furthermore, we
have Ay/N = C.

Tate’s construction [17], allows us to say that there exists a minimal commutative
graded differential algebra (4, ® AV, 0), V =E}—),, »1 Vs, and a map from (4, ® AV, d)
onto A,/J which induces an isomorphism in homology.

On the other hand, since A is involutive, we can build this model such that each V, is
endowed with an involution which is a morphism of commutative differential graded
algebras, extending the involution of 4.

In (7,19], it is proved that the Hochschild homology of A4,/J is isomorphic to the
homology of (2% ® Q7%y,45) with dd + do = 0.

A similar argument to those of Section 2 shows that

HH:(A*JJR) = H*(( ,’:0 ® QIV)+76)

Then the proof is the same as in [1]; if Ay, is not local regular, then J # 0, so we
have ¥, # 0, we can find an element y € V; such that w(y) = +y. Since w(f;) = —f;
for all i, we have w{df;) = df..

For neN, we put Zg.,=(df;...df,){dy)*", then (Zyp+,) = Zsn+p, SO
Zan+p E(Qﬁn ® Q%) .

We conclude as in [1].
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